Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: A. Hussain x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The use of locally available mineral clay for the removal of radionuclides from the low and intermediate level liquid waste has been studied. Adsorption behavior of this naturally available inorganic adsorbent is reported. The factors such as contact time, nature of the waste, pH and adsorption capacity have been considered. These optional physico-chemical conditions suggest an effective use of this locally available adsorbent for the decontamination of the liquid radioactive waste at Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad.

Restricted access

Abstract  

The present investigation has been revealed that homogeneous silver-tungsten (Ag–W) composite powders doped with cobalt as sinter aid can be produced by the two-stage reduction of co-precipitated tungstate. The sintering of the powders has been studied using dilatometry and the results showed that the critical level for activated sintering is of the order of 0.3 mass percent cobalt with respect to the tungsten content of the compact powder. This critical level is equivalent to approximately six to seven atomic layer coverage of the tungsten particles by cobalt. The levels of cobalt addition above the critical amount leads to the formation of cobalt tungsten (CoW3) intermetallic compound precipitates, which become trapped within the silver phase in the sintered composite material. Microstructural evaluation of sintered specimens has been carried out using optical and electron microscopy. Transmission electron microscopy results revealed the neck formation between adjacent tungsten particles along with the presence of silver around the tungsten particles. Energy dispersive X-ray (EDX) analysis also confirmed that amounts of cobalt was 0.3 mass percent, in the region containing the silver at the tungsten particle interface which agreed with the level of activated sintering.

Restricted access

Pheromone traps with different doses of disparlure [(Z)-7,8-epoxy-2-methyloctadecane] were tested for a local strain of the Indian gypsy moth (Lymantria obfuscata) at Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (India). Disparlure at 500 µg dose proved to be effective in trapping gypsy moth populations. The first adults were caught on the third week of June in 2007-2009 with peak catches a week later. Catches in disparlure-baited traps at all dosage levels (0.5, 50 and 500 µg) were significantly higher as compared to control traps. The regression equation revealed strong (99%) correlation between moth catches and applied doses. The accumulated degree day model predicted 65.31 to 117.97 heat units for larval hatch and 794.66 to 928.15 heat units for adult emergence. The principal component analysis showed significant variability between weather variables and adult L. obfuscata population.

Restricted access

Studies of basic zirconium carbonate, oxalate, nitrate and sulphate using TG, DTA and DTG methods, combined with isothermal gaseous product analyses, IR spectroscopy and X-ray diffraction techniques, have shown that the ease of ligand removal from such salts follows the sequence: ‘loosely bound’ H2O>CO3 2−≈ C2O4 2−>NO3 >OH (or ‘ tightly bound’ H2O)>SO4 2−.

Restricted access

Abstract

This paper introduces a stereoscopic image and depth dataset created using a deep learning model. It addresses the challenge of obtaining accurate and annotated stereo image pairs with irregular boundaries for deep learning model training. Stereoscopic image and depth dataset provides a unique resource for training deep learning models to handle irregular boundary stereoscopic images, which are valuable for real-world scenarios with complex shapes or occlusions. The dataset is created using monocular depth estimation, a state-of-the-art depth estimation model, and it can be used in applications like rectifying images, estimating depth, detecting objects, and autonomous driving. Overall, this paper presents a novel dataset that demonstrates its effectiveness and potential for advancing stereo vision and developing deep learning models for computer vision applications.

Restricted access

The investigation was undertaken at two different climatic regimens of NW Himalayas, to determine the response of diverse genotypes of triticale and wheat and environment on their crossability as well as to evaluate the efficiency of Imperata cylindrica-mediated chromosome elimination approach for haploid induction in triticale × wheat (Triticum aestivum) hybrids. The experimental material included three elite hexaploid triticale genotypes (DT123, DT126 and TL9335) and five bread wheat genotypes (DH40, HPW155, HS295, VL829 and C306). Significant genotypic and environmental variations were observed for seed setting at two agroclimatic zones. Among parental genotypes, DT126 (triticale) and C306, HPW155 and HS295 (wheat) responded significantly better for seed setting due to significant positive GCA effects at both locations. Maximum seed set of 39.53% and 45.37% was recorded at short day and long day climates, respectively, proving later as the better location for seed setting in most of the crosses. For all the three parameters of haploid induction, viz. pseudoseed formation, embryo formation and regeneration, significant differences were recorded in all the triticale × wheat hybrids depicting the potential of I. cylindrica-mediated approach for haploid induction. Triticale × wheat cross DT126 × HS295 followed by DT126 × HPW155 were found to be significantly more responsive towards embryo formation and regeneration.

Restricted access

Alkaline and acidic pH of soil limit crop yield. Products of phenylpropanoid pathway play a key part in plant abiotic stress tolerance. It was aimed to assess efficacy of tyrosinepriming for activation of enzyme involved in phenolic accumulation induction of pH tolerance in maize seedlings. Seeds of two maize cultivars, namely Sadaf (pH tolerant) and S-2002 (pH sensitive), were grown under three pH levels (3, 7 and 11). Eight and twelve days old seedlings were harvested and parted into roots and shoots for the assessment of growth, enzymatic and non-enzymatic antioxidants. PAL activity was directly correlated with total soluble phenolics, flavonoids, growth and seedling vigour. Lower accumulation of phenolics and PAL activity in the pH sensitive (S-2002) cultivar indicated greater oxidative damage caused by pH extremes. Priming improved antioxidative potential by enhancing PAL activity and phenolics accumulation and hence increased growth in maize seedlings.

Restricted access

A study was conducted on the sheep farm of the Livestock Experimental Station, located in the southwestern Punjab, Pakistan, to determine the copper nutrition status of different classes of grazing sheep during two different seasons. A complete free-choice supplement (feed) was available to all animals throughout the year. The purpose of this research was to investigate, as a function of the seasons, the transfer of Cu from soil, and dietary factors to sheep grazing in this semiarid region, in order to evaluate if the Cu requirement of grazing livestock was met or if a deficiency occurred. The final goal was to maximize the production of the animals by adopting, if necessary, adequate, balanced Cu supplementation. Soil, forage, feed and water samples, and animal samples (plasma, milk, faeces and urine from lactating ewes, plasma, faeces and urine from non-lactating ewes and plasma and faeces from male animals) were taken eight times during the year (four times in each season). Soil copper was affected by the seasonal changes and sampling intervals and was significantly higher than plant needs during both seasons, while the forage copper level did not show significant seasonal fluctuations, but was only affected by the sampling intervals. The soil and forage Cu was sufficient for the requirements of the plants and the animals grazing there on during both seasons. The copper contents of the feed and water showed no seasonal or sampling interval fluctuations. The plasma Cu was affected by seasonal variations in non-lactating ewes and in rams and by sampling intervals in the lactating ewes. Faecal and urine Cu was not affected by seasonal or sampling intervals except in non-lactating ewes, where the sampling interval had a pronounced effect on faecal Cu, while milk Cu in lactating ewes was affected by seasonal changes only. In all classes of sheep plasma Cu was higher during the winter than during the summer and remained in the normal range for ruminants during both seasons. It is concluded that a mixture with high bioavailability, containing Cu, should be continuously provided to grazing sheep in this semi-arid region in order to maintain the normal level of Cu and maximize the production potential of ruminants.

Restricted access

The impact of trinexapac-ethyl (TE) on salinity subjected wheat plants was evaluated via pot based experiment. The treatments applied to wheat seedlings included (Ck) control (no NaCl nor TE spray), foliar spray of TE (1.95 ml L−1), only NaCl (50 mM) and NaCl+ TE (50 mM + 1.95 ml L−1). Foliar application of TE was done seven days after imposition of salinity. Growth parameters (root length, shoot length, fresh weight, and dry weight) and photosynthetic pigments content (chlorophyll a, b, a + b and a/b), water relation (water potential, osmotic potential, turgor potential and relative water contents) as well as catalase (CAT) activity exhibited marked reduction in comparison to control. In addition, an increment was noted in organic solutes content (proline, soluble protein and soluble sugar) and enzyme activity of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in stressed seedlings over control seedlings. The foliar applied TE mostly enhanced growth of salt stressed seedlings, accompanied by reinforcement in photosynthetic pigments, organic solutes, and enzyme activity (SOD, CAT, POD, and APX) in comparison to stressed seedlings. It is worthy to mention that, TE has potential to enhance salt tolerance of wheat seedlings. Thus, our findings suggest that seedling treated with TE is an effective strategy that can be used to enhance salt tolerance of wheat crop.

Restricted access
Cereal Research Communications
Authors:
A. Sattar
,
M.A. Cheema
,
T. Abbas
,
A. Sher
,
M. Ijaz
,
M.A. Wahid
, and
M. Hussain

Late planting of wheat in rice-wheat cropping system is perhaps one of the major factors responsible for low crop yield. The main cause of reduction in yield is due to supra-optimal conditions during the reproductive growth. High temperature during reproductive phase induces changes in water relations, decreases photosynthetic rate, and transpiration rate, stomatal conductance and antioxidative defence system. Silicon (Si), being a beneficial nutrient not only provides significant benefits to plants growth and development but may also mitigate the adversities of high temperature. A field study was conducted at Agronomic Research Area of University of Agriculture; Faisalabad, Pakistan to assess the performance of late sown wheat with the soil applied Si. Experiment was comprised of three sowing dates; 10th Nov (normal), 10th Dec (late), 10th Jan (very late) with two wheat varieties (Sehar-2006 and Faisalabad-2008), and an optimized dose of Si (100 mg per kg soil), applied at different growth stages (control, crown root, booting and heading). Results indicated that 100 mg Si per kg soil at heading stage offset the negative impact of high temperature and induced heat tolerance in late sown wheat. Silicon application improved 34% relative water contents (RWC), 30% water potential, 26% osmotic potential, 23% turgor potential and 21% photosynthetic rate, and 32% transpiration rate and 20% stomatal conductance in wheat flag leaf than control treatment. Further it was observed that Si application preventing the oxidative membrane damage due to enhanced activity of antioxidant enzymes, i.e. 35% superoxide dismutase (SOD) and 38% catalase (CAT). In conclusion results of this field study demonstrated that soil applied Si (100 mg per kg soil) at heading stage enhanced all physiological attributes of wheat flag leaf. Which in turn ameliorated the adverse effects of high temperature in late sown wheat. Study depicted that Si can be used as a potential nutrient in order to mitigate the losses induced by high temperature stress.

Restricted access