Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: A. Kadioğlu x
  • Refine by Access: All Content x
Clear All Modify Search

The protective effect of a cytokinin benzyladenine (BA), against toxicity of paraquat (PQ), a widely used herbicide and a well-known oxidative stress inducer, was investigated in the leaves of maize. Maize leaves have been pretreated with BA at concentrations of 1, 10 and 100 µM and afterwards treated with PQ. At all concentrations tested, BA retarded PQ-induced decreases in chlorophyll, carotenoid and ascorbic acid contents. Pretreatment with 10 and 100 mM of BA significantly increased superoxide dismutase (SOD) activity after 8 h of PQ treatment but there was no significant change in SOD activity in the leaves pretreated with BA at 12 and 24 h. However, peroxidase activity significantly increased in 100 µM of BA pretreated leaves. Results indicate that pretreatment with BA reduce PQ toxicity and BA-treated plants might become more tolerant against oxidative stress.

Restricted access

Morphological and biochemical changes in plant cells are known as important events for adaptation to stress. In this study, in Ctenanthe setosa leaves to which polyamines were applied during drought stress, changes in the activity of peroxidase, reducing sugar, proline and soluble protein levels were investigated. The three common polyamines, putrescine, spermidine and spermine were exogenously treated through the leaves. The polyamines were sprayed onto the leaves at 5×10−5 M. In the leaves to which polyamines were applied the peroxidase activity decreased, soluble protein increased. Also, it was determined that putrescine and spermidine caused an increase in the amount of proline and in reducing sugar. However, increase was not observed in the leaves to which spermine was applied. In addition, we observed an increase in the activity of peroxidase, proline and reducing sugar levels, and a decrease in soluble protein level in the control ones and the leaves to which polyamines were applied during drought stress. As a result, the effect of polyamine on leaf rolling may be explained through the contribution to osmotic adjustment of the increase in proline, reducing sugar and soluble protein contents.

Restricted access

We studied the changes in antioxidant system and chlorophyll fluorescence parameters in post-stress emerging Ctenanthe setosa (Rosc.) Eichler (Marantaceae) plants (PSE plants) having reduced leaf area under drought stress causing leaf rolling and re-watering. PSE plants were compared to primary stressed plants (PS) in previous studies. The parameters were measured at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others is intermediate form). Water potentials and stomatal conductance of leaves were gradually decreased during leaf rolling. Similarly, maximum quantum efficiency of open PS II center and quantum yield of PS II decreased during the rolling period. Non-photochemical quenching of chlorophyll fluorescence decreased at score 2 then increased while photochemical quenching did not change during leaf rolling. Electron transport rate decreased only at score 4 but approximately reached to score 1 level after re-watering. Superoxide dismutase activity was not constant at all leaf rolling scores. Ascorbate peroxidase, catalase and glutathione reductase activities generally tended to increase during leaf rolling. Lipid peroxidation and H 2 O 2 content increased at score 2 but decreased at the later scores. On the other hand, O 2 ·− production increased during the rolling period. After re-watering of the plants having score 4 of leaf rolling, antioxidant enzyme activities were lower than those of score 1. Other physiological parameters also tended to reach the value of score 1. The results indicated that PSE plants gained drought tolerance by reducing leaf area effectively induced their antioxidant systems and protected the photosynthesis under drought stress similar to PS plants.

Restricted access