Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: A. Kroó x
Clear All Modify Search

Abstract  

ПустьC — пространств о 2π-периодических вещественных непрер ывных функций, W{rLip α={f∈C r : ω(f (r), δ)≦δα}, Y⊂[−π,π] — некоторое дискр етное множество точе к на периоде, плотность ко торого задается соот ношением ∂(Y)= max min x-у. Дляf∈C x∈[−π,π] y∈Y обозначим через pk(f) pk(f)y т ригонометрические полиномы степени не в ышеk наилучшего чебышевского прибли жения функцииf на все м периоде и на дискретном множес тве Y соответственно. Тогда величина

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Omega _{k,r + \alpha } (d) = \mathop {\sup }\limits_{f \in W_r Lip\alpha } \mathop {\sup }\limits_{\mathop {Y \subset [ - \pi ,\pi ]}\limits_{\rho (Y) \leqq d} } \left\| {p_k (f) - p_k (f)_Y } \right\| (d > 0)$$ \end{document}
xарактеризует отклон ение наилучших равно мерных и дискретных чебышевс ких приближений равномерно на классе функций WrLip а. В работе да ются точные оценки для Ώk,r+α(d) пр и всехk, r и 0-<d≦−1.

Restricted access