Search Results
You are looking at 1 - 9 of 9 items for
- Author or Editor: A. Sawant x
- Refine by Access: All Content x
Abstract
The use of ethyl-ga-isonitrosoacetoacetate (HEINA) for determination of palladium is reported. Pd can be estimated quantitatively from 0.5M to 2M HCl solution. Accurate results are obtained in 1M solution with an accuracy better than 1%. Decontamination values against platinum metals and other metals usually associated with Pd are greater than 105. The time required for gravimetric determination is about an hour, for radiochemical separation about 25 min and the recovery is better than 90%.
Abstract
Pyridine-2-carboxaldehyde 2-hydroxybenzoylhydrazone (PAHB) is proposed as an extractant for the separation and spectrophotometric determination of uranium(VI). The optimum extraction conditions have been evaluated by studying various parameters such as pH, diluents, equilibration time and reagent concentration. PAHB forms yellow colored complex with uranium(VI) in the pH range of 3.5-4.6 which can be extracted by isobutyl methyl ketone. The extracted complex exhibits an absorption maximum at 375 nm. Beer's law was obeyed in the concentration range 1.0-5.6 ppm of uranium(VI). The nature of the extracted species (1:2) was determined by log D-log c plot. The proposed method permits selective separation of uranium(VI) from its binary mixtures. The method is also applied for the estimation of uranium in multicomponent mixtures and monazite sand.
Abstract
Neutron activation analysis has been applied for determination of selenium in environmental and food samples. Food and environmental samples from city, industrial and agricultural zones were collected with utmost care. Samples were activated in the flux 1·1013 n·cm–2·s–1 in the CIRUS reactor of BARC, Bombay, 75-Se was separated from 6.5N HCl solution using ethyl--isonitrosoacetoacetate (HEINA) reagent. The decontamination studies showed the method is very selective. Selenium contents of wheat, rice, vegetables, cereals pulses etc. and of soil, water, and deposits on plants and surface were determined by the procedure developed.
Abstract
The optimum conditions for the extractive spectrophotometric determination of dioxouranium(VI) with hexamethyleneiminecarbodithioate(HMICdt) have been established. Dioxouranium(VI) reacts with this ligand at pH 4.5 to form a yellowish-orange uncharged 12 metal-ligand complex which can be extracted by chloroform. The calibration graph was linear in the range of 1–20 g ml–1 of dioxouranium(VI) at 335 nm. The molar absorptivity of the extracted species is 5.952×103 l mol–1 cm–1 with Sandell's sensitivity of 0.04 g cm–2. The average of 10 determinations of dioxouranium was 49.75 g for the samples containing 50 g of U(VI) and the variation from the mean at 95% confidence limit was 49.75±0.5955.
Abstract
A differential pulse voltammetric method has been successfully used for the determination of uranium in low concentration streams of a uranium plant. The method gives a precision of about 13% to 7% in the range of 300 ppb to 15 ppm. The accuracy of the results was ascertained by comparing the values with those obtained by a spectrophotometric method. The method is simple, fast, sensitive, fairly accurate and does not require a preconcentration step.
Abstract
Garware Polyester Film, an indigenously available material has been evaluated systematically as a nuclear track detector for the detection of fission fragments. The relative fission track detection efficiency of this film was found to be (86.0±4.0)%. The bulk etch rate, determined by the gravimetric method, was found to be 0.75±0.05 μm/h. The track etch rate was determined as 15.0±1.5 μm/h. This detector was employed for the estimation of uranium in seawater samples and the results obtained were compared with the results obtained by using the commonly used Lexan detector. Uranium fractions after chemical separation from seawater samples were also analyzed by alpha-spectrometry and neutron activation analysis techniques and the results were compared with that obtained by the fission track method. Fission track method has the advantage, as it does not require any chemical separation. The indigenously available polyester film (polyethylene terphthalate) appears to be a good substitute of Lexan as nuclear track detector.
Abstract
A newly established uranium processing facility has been commissioned at BARC, Trombay. Monitoring of occupational workers is essential to assess intake of uranium in this facility. A group of 21 workers was selected for bioassay monitoring to assess the existing urinary excretion levels of uranium before the commencement of actual work. Bioassay samples collected from these workers were analyzed by ion-exchange technique followed by laser fluorimetry. Standard addition method was followed for estimation of uranium concentration in the samples. The minimum detectable activity by this technique is about 0.2 ng. The range of uranium observed in these samples varies from 19 to 132 ng/L. Few of these samples were also analyzed by fission track analysis technique and the results were found to be comparable to those obtained by laser fluorimetry. The urinary excretion rate observed for the individual can be regarded as a ‘personal baseline’ and will be treated as the existing level of uranium in urine for these workers at the facility.
Abstract
Drinking water samples were collected from four different districts, namely Bhatinda, Mansa, Faridkot and Firozpur, of Punjab for ascertaining the U(nat.) concentrations. All samples were preserved, processed and analyzed by laser fluorimetry (LF). To ensure accuracy of the data obtained by LF, few samples (10 nos) from each district were analyzed by alpha spectrometry as well as by fission track analysis (FTA) technique. For FTA technique few μl of water sample was transferred to polythene tube, lexan detector was immersed in it and the other end of the tube was also heat-sealed. Two samples and one uranium standard were irradiated in DHRUVA reactor. Irradiated detectors were chemically etched and tracks counted using an optical microscope. Uranium concentrations in samples ranged from 3.2 to 60.5 ppb and were comparable with those observed by LF.
Abstract
The bacterial spirochete Borrelia burgdorferi, the causative agent of Lyme Disease, can disseminate and colonize various tissues and organs, orchestrating severe clinical symptoms including arthritis, carditis, and neuroborreliosis. Previous research has demonstrated that breast cancer tissues could provide an ideal habitat for diverse populations of bacteria, including B. burgdorferi, which is associated with a poor prognosis. Recently, we demonstrated that infection with B. burgdorferi enhances the invasion and migration of triple-negative MDA-MB-231 cells which represent a type of breast tumor with more aggressive cancer traits. In this study, we hypothesized that infection by B. burgdorferi affects the expression of cancer-associated genes to effectuate breast cancer phenotypes. We applied the high-throughput technique of RNA-sequencing on B. burgdorferi-infected MDA-MB-231 breast cancer and normal-like MCF10A cells to determine the most differentially expressed genes (DEG) upon infection. Overall, 142 DEGs were identified between uninfected and infected samples in MDA-MB-231 while 95 DEGs were found in MCF10A cells. A major trend of the upregulation of C-X-C and C-C motif chemokine family members as well as genes and pathways was associated with infection, inflammation, and cancer. These genes could serve as potential biomarkers for pathogen-related tumorigenesis and cancer progression which could lead to new therapeutic opportunities.