Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: A. Tian x
  • All content x
Clear All Modify Search

Abstract  

The transformation equation for the thermokinetics of consecutive first-order reactions has been deduced, and a thermokinetic research method of irreversible consecutive first-order reactions, which can be used to determine the rate constants of two steps simultaneously, is proposed. The method was validated and its theoretical basis was verified by the experimental results.

Restricted access

To investigate the effect of Zn fertilization on soil Zn fractions and grain Zn concentration in wheat grown on potentially Zn-deficient soil, a field experiment was carried out. The experimental design was split plot consisted of two varieties of wheat (Zhengmai 9023 and Xinong 889) with five Zn levels (0, 7.5, 15, 30 and 45 kg Zn/ha). Results showed that Zn fertilization had no significant effect on wheat yield and grain Zn concentration, and the recovery of Zn fertilizer was only 0.06% to 0.29%. However, the amount of soil DTPA-Zn was increased by 2.3-9.8-folds as Zn supplementation increases during the whole wheat growth stage as compared to the control (Zn0 treatment). Besides, DTPA-Zn was positively correlated with both Loose organic matter bound Zn (LOM-Zn) and Exchange Zn (Ex-Zn), and their partial correlation coefficients were 0.558 and 0.119, respectively. Moreover, these two fractions also showed positive correlation with grain Zn concentration. The amount of LOM-Zn was firstly increased with increasing Zn fertilizer levels then gradually decreased as it get converted to mineral bound Zn (Min-Zn). Zn fertilization in this potentially Zn deficient soil increased the amount of DTPA-Zn in the whole wheat growth stage; however, grain Zn concentration cannot be significantly increased as Zn levels increase, thus suggesting that there are inhibitory factors for Zn absorption and translocation. Furthermore, the amount of soil DTPA-Zn perhaps cannot exactly reflect the capability of soil to supply Zn.

Restricted access

Abstract  

On the basis of the theory of thermokinetics proposed in the literature, a novel thermokinetic method for determination of the reaction rate, the characteristic parameter method, is proposed in this paper. Mathematical models were established to determine the kinetic parameters and rate constants. In order to test the validity of this method, the saponifications of ethyl benzoate, ethyl acetate and ethyl propionate, and the formation of hexamethylenetetramine were studied with this method. The rate constants calculated with this method are in agreement with those in the literature, and the characteristic parameter method is therefore believed to be correct.In the light of the characteristic parameter method, we have developed further two thermo-kinetic methods, the thermoanalytical single and multi-curve methods, which are convenient for simultaneous determination of the reaction order and the rate constant. The reaction orders and rate constants of the saponifications of ethyl acetate and ethyl butyrate and the ring-opening reaction of epichlorohydrin with hydrobromic acid were determined with these methods, and their validity was verified by the experimental results.

Restricted access

Three field experiments were conducted to determine the effect of soil Zn, foliar Zn, and soil N application on Zn and phytic acid concentrations in wheat grain grown on potentially Zn-deficient soil. Results showed significant genotypic variation in grain Zn concentrations among fifteen wheat cultivars commonly grown in northwest China. Soil Zn application had mixed effects, increasing grain Zn concentrations of some cultivars by as much as 21%, but reducing grain Zn concentrations of other cultivars by as much as 14%. In comparison, foliar Zn application increased grain Zn concentrations by 26 to 115%. Grain Zn concentrations were 14% larger in the combined (foliar Zn + soil Zn) treatment compared to the foliar Zn treatment, but the added cost of soil Zn application may not be economically justifiable. Wheat grain phytic acid concentrations and phytic acid: Zn molar ratios were less in the foliar Zn and (foliar Zn + soil Zn) treatments compared to the soil Zn and the unfertilized treatments. This indicated that foliar Zn increased Zn bioavailability. Best results were obtained when foliar Zn was applied at early grain filling. Overall, these findings indicate that foliar Zn application to Zn-efficient cultivars could reduce human Zn deficiency in regions with potentially Zn-deficient soil.

Restricted access

Background and aims

Perceived stress has been regarded as a risk factor for problematic social networking site (SNS) use, yet little is known about the underlying processes whereby confounding variables may mediate or moderate this relationship. To answer this question, this study examined whether depression and anxiety mediated the relationship between perceived stress and problematic SNS use, and whether these mediating processes were moderated by psychological resilience and social support.

Methods

Participants were 641 Chinese college students who completed anonymous questionnaires measuring perceived stress, depression/anxiety, psychological resilience, social support, and problematic SNS use.

Results

The results showed that (a) depression/anxiety mediated the relationship between perceived stress and problematic SNS use; (b) the mediating effects of depression/anxiety on the association between perceived stress and problematic SNS use were moderated by psychological resilience. Specifically, the mediating effects of depression/anxiety were stronger for individuals with lower levels of psychological resilience, compared with those with higher levels of psychological resilience; and (c) the mediating effects of depression/anxiety were not moderated by social support, although social support was negatively related to depression/anxiety.

Discussion and conclusion

This study can contribute to a better understanding of how and when perceived stress increases the risk of problematic SNS use, and implies the importance of enhancing psychological resilience in preventing problematic SNS use.

Open access

Recently, super rice has gained much importance due to its high yield potential while exogenous application of plant growth regulators (PGRs) is an important aspect in plant development and defense responses under stress conditions. In this study we conducted two pot experiments. Firstly, four super rice cultivars, viz. Peizataifeng, Huayou 213, Yuxiangyouzhan and Huahang 31 were subjected to a series of five chilling temperatures, i.e. 11 °C, 12 °C, 13 °C, 14 °C and 15 °C (day/night) for about 25–27 days. Secondly, seeds of Peizataifeng (super rice) and Yuejingsimiao 2 (non-super rice) were then treated with different combinations of salicylic acid (SA), brassinolide (BR), calcium chloride (CaCl2) and fulvic acid (FA) and then exposed to chilling stress at 13 °C for four days. Resultantly, Peizataifen (super rice) was found with the lowest seedling survival rate at all chilling temperatures among all four super rice cultivars, however, it was still found more resistant when compared with Yuejingsimiao 2 (non-super rice) in the second experiment. Furthermore synergistic effect of all PGRs alleviated low temperature stress in both rice cultivars by improving seedling survival rates, leaf area, seedling dry weight, seedling height, root morphology and by modulating antioxidant enzymes, improving proline content and lowering lipid peroxidation.

Restricted access