Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: A.A. Lin x
  • All content x
Clear All Modify Search
Journal of Radioanalytical and Nuclear Chemistry
Authors: A. Ďurecová, X. Lin, R. Henkelmann, and B. Krafka
Restricted access

Abstract  

In the present study, the characteric-structure relationship of epoxidized soybean oils (ESO) with various degrees of epoxidation has been investigated. FTIR analysis was used to identify the relative extent of epoxidation of the samples during the epoxidation reaction. The viscosities of ESO were much higher than that of the raw oil, viscosity increased with degree of epoxidation. The viscous-flow activation energy of ESO was determined to be higher than that of the raw oil (20.72 to 77.93% higher). Thermogravimetry analysis (TG) of ESO was used to investigate the thermodynamic behavior of the samples. With increasing degree of epoxidation, the thermal stability of the samples initially decreased, then increased at the final reacting stage. Differential scanning calorimeter (DSC) indicated that the melting point of ESO was higher than that of soybean oil. Gel permeation chromatography (GPC) indicated the molecular mass of the samples increased initially, then decreased, with an increase in the extent of epoxidation.

Restricted access

Abstract  

A new method is presented to calculate with improved accuracy the absolute peak efficiency of cylindrical Ge and Ge(Li) detectors for point, disk and cylinder sources, positioned at any source-detector distance. Moreover attention was paid to true-coincidence effects. The method is extensively tested and applied for the analysis of reference materials. The accuracy turned out to be 3% or better.

Restricted access

Abstract  

This work describes an in vivo neutron activation analysis facility for small samples, such as rats or human hand, using two 100 g252Cf neutron sources. The irradiation area is a cylindrical space, of 12 cm diameter and about 15 cm length, with fairly uniform neutron flux distribution. Experimental data on the reproducibility, effects of volume and other conditions for in vivo measurements are given. Comparative atomic absorption data on calcium measurements on rats are reported. The facility is now used for animal experiments as well as human hand irradiations in clinical investigations involving calcium metabolism and bone diseases.

Restricted access

Abstract  

USGS BCR-1 and G-2, NBS 1633a Coal Fly-Ash and a 7-element synthetic standard for biological material have been analysed in this work by reactor NAA, using the k0-standardization method. The analyses were performed independently in the analytical laboratories of the Institute for Nuclear Sciences (INW), Gent, and the Central Research Institute for Physics (KFKI), Budapest. This procedure allowed not only a comparison with the specified data or with other published values, but enabled a check of the consistency of our own results obtained in largely different experimental circumstances. As concluded the k0-standardization method combines general versatility (with respect to irradiation and counting conditions) with good accuracy, while keeping the experimental work as simple as possible. Since the k0 method is a computer-oriented technique, a FORTRAN IV program was designed and applied on a VAX 11/780 machine.

Restricted access

Summary

Supercritical fluid extraction (SFE) was used to extract shionone from Aster tataricus L. f. The effect of various parameters, i.e., temperature, pressure and sample particle size on yield was investigated with an analytical-scale SFE system to find the optimal conditions. The process was then scaled up by 50 times with a preparative SFE system under the optimized conditions of temperature 40 °C, pressure 30 MPa, and a sample particle size of 40–60 mesh. Then preparative high-speed counter-current chromatography was successfully used for isolation and purification of shionone from the SFE extract with a two-phase solvent system composed of n-hexane-methanol (2:1, volume ratio). The separation produced a total of 75 mg of shionone from 500 mg of the crude extract in one step separation with the purity of 98.7%, respectively, as determined by high-performance liquid chromatography (HPLC) and 92% recovery. The structure of shionone was identified by electrospray ionization-mass spectrometry (ESI-MS), hydrogen-1 nuclear magnetic resonance (1H-NMR), and carbon-13 nuclear magnetic resonance (13C-NMR).

Restricted access

Abstract  

A laser-induced optical fiber fluorimetry has been reported for the analysis of ultralow level of uranium. The fluorescence spectrometer includes five major components: a pulsed nitrogen laser, optical fibers, an optrode, a detector, and a boxcar. The fluorescence intensity of uranyl ions is linear with respect to the concentration of uranium. The detection limit of uranium in 1M phosphoric acid is 24 ppb. This technique can be used for the remote, on-line measurement of low level uranium.

Restricted access

Abstract  

Laser-induced optical fiber fluorimetry has been first used to analyze uranium(VI) concentration in the kinetic studies on the extraction of uranium(VI) between 0.5 mol/l H3PO4 solution and HDEHP-cyclohexane system with a Lewis cell. The effects of stirring speed, temperature and concentrations of uranium(VI) and HDEHP on the rate of extraction were examined. These data show that the extraction rate of uranium(VI) in this system is controlled by the chemical reaction at the interface. The rate equations and the rate constants of forward and reverse extraction are obtained. The mechanism of the extraction is discussed.

Restricted access

Differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and infrared (IR) spectroscopy have been used to examine the chemical and physical changes (crystallinity, accumulation of oxygen-containing groups, etc.) during thermal oxidation of polyethylene, polypropylene and Penton contained in coatings and metalfilled films, taking into account the thickness of the polymer layer and catalytic activity of the metal.

Restricted access

Three isoforms of metallothionein protein induced with Zinc were isolated and purified from housefly larvae, Musca domestica, by gel filtration on Sephadex G-75, G-25 and anion exchange on DEAE-52 chromatography. Among them, one was found to possess antibacterial activity, and was further characterized by SDS-polyacrylamide gel electrophoresis, sulphydryl group determination, enzyme hydrolysis, and spectra property. Our results showed that the novel protein has the characteristics of heat-stable, low-molecular weight (6 kDa), rich-cysteine (approximately 12 cysteine residues in one molecule), metal affinity, and antibacterial activity. This paper was the first to report that metallothionein had antibacterial activity. We expect that this characteristic would give some help to investigate definite physiological functions of metallothionein.

Restricted access