Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Adriana Bakalova x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The thermal decomposition of the binuclear Pt(II) complexes with acetate, propionate, valerate and izovalerate ligands were studied by TG and DTA techniques. The Pt(II) complex with acetic acid (PtAA) was stable up to 343.15 K, Pt(II) complex with propionic acid (PtPrA) was stable up to 323.15 K, Pt(II) complex with valeric acid (PtVA) was stable up to T=313.15 K and Pt(II) complex with isovaleric acid (PtIvA) was stable up to 408.15 K. The PtAA complex was investigated again after a year by thermogravimetric analysis. After the thermal decomposition of the Pt(II) complexes with carboxylic acids, only in the PtVA complex and PtAA complex (investigated after a year) the final residue contains only platinum, while in the rest complexes the solid residue was a mixture of platinum and platinum carbides (PtC2, Pt2C3).

Restricted access

Palladium(II) complexes with 5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione

Synthesis, thermogravimetric and cytotoxic investigation

Journal of Thermal Analysis and Calorimetry
Authors:
Adriana Bakalova
,
H. Varbanov
,
R. Buyukliev
,
G. Momekov
, and
D. Ivanov

Abstract  

Two new palladium(II) complexes with 5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione(mpyh) were synthesized: cis-[Pd(mpyh)2Cl2]·H2O and cis-[Pd(mpyh)2Br2]·2H2O. The molecular formulae of the complexes were confirmed by elemental analysis, IR, 1H NMR spectra and DTA study. The ligand is coordinated to the palladium ion with N-atom of the pyridine ring. The spectroscopic data indicate a square planar geometry with two N-pyridine atoms and two halogene anions in cis position. The final product of the thermal decomposition of cis-[Pd(mpyh)2Cl2]·H2O is metallic Pd, whereas for cis-[Pd(mpyh)2Br2]·2H2O the residue consists of metallic Pd and C. The cytotoxic effects of the complexes were examined in vitro on some human tumor cell lines. The cis-[Pd(mpyh)2Cl2]·H2O proved to be more active as compared to the cis-[Pd(mpyh)2Br2]·2H2O.

Restricted access