Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ahmed A. Hamed x
  • Refine by Access: All Content x
Clear All Modify Search


The therapeutical applications of ornamental plants have been categorized to be of a great effectiveness in multiple industries from ancient times until present days. Pluchea dioscoridis is widely known Egyptian wooden plant that has been extensively applied for different medicinal purposes. In this study, LC-ESI-MS/MS analysis of the potent antimicrobial ethyl acetate and n-butanol extracts of P. dioscoridis leaves led to identification of 28 and 21 compounds, respectively. The identified compounds were categorized as phenolic acids, phenolic acids derivatives, organic acids, flavonoids (aglycones and glycosides), secoiridoids, coumarin derivatives, and gallotannins derivatives. Among them, caffeic acid 3-sulfate was the most predominate in the investigated extracts followed by ferulic acid and dicaffeoyl-quinic acid. Also, the antimicrobial potentiality of different extracts was evaluated against different pathogenic microbes including Enterobacter cloacae, Micrococcus leutus, Aeromonas hydrophila, Bacillus subtilis, Bacillus cereus, Bacillus lichneformis and Clostridium species. Furthermore, different concentrations of the most potent extract were assayed for antibacterial efficacy on growth curve kinetics against the susceptible bacteria along 4days incubation period. Our gathered data confirmed that, the antimicrobial activity against tested bacteria was different according to the solvent used in the extraction process. Mostly, all the extracts showed a wide spectrum antibacterial activity except the plant water extract which shows a mild activity against Clostridium sp. only. Based on the highest inhibition zone diameter, the ethyl acetate extract followed by butanol extract exhibited the highest inhibition zone with Micrococcus luteus and B. subtilis (20.0 and 18.5 mm) respectively. Determining the effect of ethyl acetate extract at different concentration (0, 0.66, 1.66, 3.33, 6.67, 13.34 and 20.01 mg mL−1) on M. luteus growth kinetics, the data assured that the antibacterial activity shows concentration dependent manner with the highest antibacterial activity at 20.01 mg mL−1 culture. The data also confirmed that, none of the selected concentration showed bactericidal activity in the prepared cultures, and with the prolonged incubation period the bacteria acquire resistance against the extract beginning from second or third day of incubation.

Open access

Eight compounds were isolated and identified from the soil-inhabiting fungus Aspergillus fumigatus 3T-EGY, namely, stearic acid (1), α-linolenic acid (2), physcion (3), di-(2-ethylhexyl) phthalate (4), 2,4,5,17-tetramethoxy pradimicin lactone (5), 3,5-dihydroxy-7-O-α-rhamnopyranoyl-2H-chromen-2-one (6), juglanthraquinone A-5-O-d-rhodosamine-(4′→1″)-2-deoxy-d-glucose (4″→1″′)-cinerulose B (7), and micropeptin (8). Their structures were determined on the basis of one-dimensional (1D-) and two-dimensional nuclear magnetic resonance (2D-NMR) [1H-, 13C-NMR, 1H-1H COSY (COrrelated SpectroscopY), and 1H-13C HMBC (Heteronuclear Multiple Bond Correlation) spectroscopy]. Compound 7 showed moderate in vitro antimicrobial activity against three pathogenic strains with inhibition zones values were ranged from 9.0 to 10.66 mm compared to neomycin as a positive control with inhibition zones values were ranged from 14.0 to 19.0 mm.

Open access