Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Ahmed-G. Ibrahim x
  • All content x
Clear All Modify Search
In this paper we prove the existence of solutions of the differential inclusions
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left\{ \begin{gathered} \dot X(t) \in - A_t (X(t)) + F(t,X(t)),,0 \leqslant t \leqslant T_0 \hfill \\ X(0) = x_0 \hfill \\ \end{gathered} \right.$$ \end{document}
whereA t is a multivaluedm-accretive operator on a Banach spaceE andF is a measurable multifunction defined on the set , lower semicontinuous inx and its values are not necessarily convex inE. This result generalizes some results in [1] and [9].
Restricted access