Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Ana Santos x
  • Refine by Access: All Content x
Clear All Modify Search

Thermochemical properties of two nitrothiophene derivatives

2-acetyl-5-nitrothiophene and 5-nitro-2-thiophenecarboxaldehyde

Journal of Thermal Analysis and Calorimetry
Authors: Manuel Ribeiro da Silva and Ana Santos

Abstract  

This article reports the values of the standard (p o = 0.1 MPa) molar enthalpies of formation, in the gaseous phase,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} \left( {\text{g}} \right),$$ \end{document}
at T = 298.15 K, of 2-acetyl-5-nitrothiophene and 5-nitro-2-thiophenecarboxaldehyde as −(48.8 ± 1.6) and (4.4 ± 1.3) kJ mol−1, respectively. These values were derived from experimental thermodynamic parameters, namely, the standard (p o = 0.1 MPa) molar enthalpies of formation, in the crystalline phase,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} \left( {\text{cr}} \right) ,$$ \end{document}
at T = 298.15 K, obtained from the standard molar enthalpies of combustion,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${{\Updelta}}_{\text{c}} H_{\text{m}}^{\text{o}} ,$$ \end{document}
measured by rotating bomb combustion calorimetry, and from the standard molar enthalpies of sublimation, at T = 298.15 K, determined from the temperature–vapour pressure dependence, obtained by the Knudsen mass loss effusion method. The results are interpreted in terms of enthalpic increments and the enthalpic contribution of the nitro group in the substituted thiophene ring is compared with the same contribution in other structurally similar compounds.
Restricted access

Abstract  

The standard (p 0=0.1 MPa) molar enthalpies of formation, in the condensed phase, of nine linear-alkyl substituted thiophenes, six in position 2- and three in position 3-, at T=298.15 K, were derived from the standard massic energies of combustion, in oxygen, to yield CO2(g) and H2SO4·115H2O(aq), measured by rotating-bomb combustion calorimetry. The standard molar enthalpies of vaporization of these compounds were measured by high temperature Calvet Microcalorimetry, so their standard molar enthalpies of formation, in the gaseous phase, were derived. The results are discussed in terms of structural contributions to the energetics of the alkyl-substituted thiophenes, and empirical correlations are suggested for the estimation of the standard molar enthalpies of formation, at T=298.15 K, for 2- and 3-alkyl-substituted thiophenes, both in the condensed and in the gaseous phases.

Restricted access

Abstract  

The present work is part of a broader research program on the energetics of formation of heterocycles, aiming the study of the enthalpic effects of the introduction of different substituents into heterocycles. In this work we present the results of the thermochemical research on sulphur heterocycles of the type substituted thiophenes with different kind of substituents, mainly alkyl, ester, acetyl, carboxamide, acetamide, carbonitrile and carboxaldehyde. The standard (p o=0.1 MPa) molar enthalpies of formation, in the condensed phase, at T=298.15 K, of a large number of substituted thiophenes, were derived from their standard massic energies of combustion, measured by rotating-bomb combustion calorimetry, while the standard molar enthalpies of vaporization or sublimation of those compounds were obtained either by high temperature Calvet Microcalorimetry, or by the temperature dependence of their vapour pressures determined by the Knudsen effusion technique. The standard molar enthalpies of formation, of the studied sulphur heterocycles in the gaseous phase, were then derived. The results are interpreted in terms of structural contributions to the energetics of the substituted thiophenes, the internal consistency of the results is discussed and, whenever appropriate and possible, empirical correlations are suggested for the estimation of standard molar enthalpies of formation, at T=298.15 K, of substituted thiophenes. A Table of enthalpic increments for different group substituents in positions 2 or 3 of the thiophene ring has been established.

Restricted access

Abstract  

The molar heat capacity and the standard (p 0 = 0.1 MPa) molar enthalpies of formation of the crystalline of bis(glycinate)lead(II), Pb(gly)2; bis(dl-alaninate)lead(II), Pb(dl-ala)2; bis(dl-valinate)lead(II), Pb(dl-val)2; bis(dl-valinate)cadmium(II), Cd(dl-val)2 and bis(dl-valinate)zinc(II), Zn(dl-val)2, were determined, at T = 298.15 K, by differential scanning calorimetry, and high precision solution-reaction calorimetry, respectively. The standard molar enthalpies of formation of the complexes in the gaseous state, the mean molar metal–ligand dissociation enthalpies, M(II)–amino acid,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\langle D_{\text{m}} \rangle$$ \end{document}
(M–L), were derived and compared with analogous copper(II)–ligand and nickel(II)–ligand.θθ
M(II)–amino acid
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}}$$ \end{document}
(cr)/kJ mol−1
Bis(glycinate)lead(II), Pb(gly)2 −998.9 ± 1.9
Bis(dl-alaninate)lead(II), Pb(ala)2 −1048.7 ± 1.8
Bis(dl-valinate)lead(II), Pb(val)2 −1166.3 ± 2.5
Bis(dl-valinate)cadmium(II), Cd(val)2 −1243.7 ± 2.7
Bis(dl-valinate)zinc(II), Zn(val)2 −1306.1 ± 2.3
Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Nadábia de Souza, F. de Souza, I. Basílio, Ana Medeiros, E. Oliveira, Ana Santos, R. Macwdo, and R. Macędo
Restricted access

Cardiac failure secondary to myocardial fibrosis (MF) significantly contributes to death in Duchenne muscular dystrophy (DMD), a fatal form of muscle disease. In aging, the mdx mice, an animal model of DMD, MF is similar to that observed in humans. Nitric oxide-based therapy has been proposed to retard MF in DMD and a candidate is L-arginine (L-arg). In this study we evaluated the effects of long-term therapy with L-arg in the MF of mdx mice. mdx mice (6 months old) were treated with L-arg in drinking water. Control mdx mice received water only. After 15 months of treatment, hearts were stained with Masson’s trichrome for analysis of MF and with hematoxilyn and eosin for analysis of inflammation and cardiomyocyte damage. We observed that MF was not affected (29.5 ± 2.5% of MF area for control vs 31.4 ± 2% for L-arginine-treated animals; P > 0.05). The density of inflammatory cells was reduced (169 ± 12 cells/mm 2 in control vs 102 ± 9 cells/mm 2 in L-arg-treated; P < 0.05). The present study shows that long-term administration of L-arg is not effective in retarding MF in mdx dystrophinopathy.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Antonilêni Medeiros, Ana Santos, F. de Souza, J. Procópio, Márcia Pinto, and R. Macêdo

Abstract  

Stability of drugs and products has a great practical interest, which is facing to strict regulation. Thermal studies, besides the determination of the thermal properties of the investigated product allow the verification of possible interactions between the drug substances and excipients. The objective of this work was to obtain solid pre-formulates of paracetamol (PC) by spray drying (SPDR), as well as to investigate their thermal behavior. Dynamic and isotherm TG, conventional DSC and DSC-photovisual coupled methods were used to characterize the conventional and pre-formulated mixtures obtained by SPDR. The results of both DSC investigations showed slight alterations in melting temperatures, which suggests incompatibilities. The TG decomposition data of the mixtures evidenced that the dry process via SPDR leads to stability enhancement of the pre-formulated mixtures.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Ana Santos, I. Basílio, F. de Souza, A. Medeiros, Márcia Pinto, D. de Santana, and R. Macêdo

Abstract  

Thermal analysis is an essential analytical tool in development of new formulations as well as to study the interaction between drugs and excipients. This work aims to investigate the possible interactions between metformin and excipients as microcrystalline cellulose (Microcel MC101®), starch sodium glycolate (Explosol®), sodium croscarmellose (Explosel®), PVP K30, magnesium stearate, starch and lactose, usually employed in pharmaceutical products. TG, DSC and DTA techniques were used for the thermal characterization to track if the thermal properties of the drug substance were modified in the mixture. Disregard of the starch and lactose systems, no changes in thermal behavior of mixtures were found. Thermogravimetric studies (TG) of metformin and its binary mixtures showed different thermal behavior.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Edjane F. B. Silva, Marcílio P. Ribeiro, Ana C. F. Coriolano, Ana C. R. Melo, Anne G. D. Santos, Valter J. Fernandes Jr., and Antonio S. Araujo

Abstract

Thermogravimetry was applied in order to investigate the catalytic degradation of heavy oil (15.4oAPI) over silica-based MCM-41 mesoporous molecular sieve. This material was synthesised by the hydrothermal method, using cetyltrimethylammonium bromide as organic template. The physicochemical characterization by nitrogen adsorption, X-ray diffraction, and thermogravimetry, showed that the obtained material presents well-defined structure, with a uniform hexagonal arrangement. The thermal and catalytic degradation of heavy oil was performed by thermogravimetric measurements, in the temperature range from 30 to 900 °C, at heating rates of 5, 10, and 20 °C min−1. By using the model-free kinetics, proposed by Vyazovkin, it was determined that the activation energy to degrade the heavy oil was ca. 128 kJ mol−1, and for degradation of oil in presence of MCM-41, this value decreased to 69 kJ mol−1, indicating the performance of the mesoporores catalyst for the degradation process.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Antonilêni Medeiros, Ana Santos, F. de Souza, I. Júnior, J. Valdilânio, J. Procópio, D. de Santana, and R. Macêdo

Abstract  

Compatibility studies between active drugs and excipients are substantial in the pharmaceutical technology. The objective of the present work was to develop pre-formulated mixtures of metronidazole (MT) obtained by spray drying (SPDR) and their thermoanalytical characterization. Dynamic and isothermal TG, conventional DSC and DSC coupled to a photovisual system were used. DSC experiments with both techniques confirmed the homogeneity of the conventional and pre-formulated mixtures. The TG data made possible the comparison the thermal stability of the different mixtures. Similar thermal stabilities were found of the conventional and pre-formulated mixtures, with slower particles sizes of MT.

Restricted access