Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Anahí Rojas x
  • Refine by Access: All Content x
Clear All Modify Search

Let X be a topological space. For any positive integer n, we consider the n-fold symmetric product of X, ℱ n (X), consisting of all nonempty subsets of X with at most n points; and for a given function ƒ : XX, we consider the induced functions ℱ n (ƒ): ℱ n (X) → ℱ n (X). Let M be one of the following classes of functions: exact, transitive, ℤ-transitive, ℤ+-transitive, mixing, weakly mixing, chaotic, turbulent, strongly transitive, totally transitive, orbit-transitive, strictly orbit-transitive, ω-transitive, minimal, I N, T T ++, semi-open and irreducible. In this paper we study the relationship between the following statements: ƒM and ℱ n (ƒ) ∈ M.

Open access