Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Andrea Vasas x
Clear All Modify Search
Acta Biologica Hungarica
Authors: Orsolya Orbán-Gyapai, Peter Forgo, Judit Hohmann and Andrea Vasas

In the course of our pharmacological screening of Polygonaceae species occurring in the Carpathian Basin the extracts prepared from the roots of Rumex thyrsiflorus showed promising antiproliferative, xanthine oxidase inhibitory and antibacterial activities. The present work deals with the isolation of compounds from the root of the plant. After multistep separation process, four compounds were obtained from the n-hexane, chloroform and ethyl acetate soluble fractions of the methanol extract of the root. The structures of the isolated compounds were determined as 1-palmitoylglycerol, β-sitosterol, (–)-epicatechin, and procyanidin B5.

Restricted access
Acta Biologica Hungarica
Authors: C. Máthé, G. Vasas, G. Borbély, F. Erdődi, D. Beyer, Andrea Kiss, G. Surányi, S. Gonda, Katalin Jámbrik and Márta M-Hamvas

This study compares the histological, cytological and biochemical effects of the cyanobacterial toxins microcystin-LR (MCY-LR) and cylindrospermopsin (CYN) in white mustard (Sinapis alba L.) seedlings, with special regard to the developing root system. Cyanotoxins induced different alterations, indicating their different specific biochemical activities. MCY-LR stimulated mitosis of root tip meristematic cells at lower concentrations (1 μg ml−1) and inhibited it at higher concentrations, while CYN had only inhibitory effects. Low CYN concentrations (0.01 μg ml−1) stimulated lateral root formation, whereas low MCY-LR concentrations increased only the number of lateral root primordia. Both inhibited lateral root development at higher concentrations. They induced lignifications, abnormal cell swelling and inhibited xylem differentiation in roots and shoots. MCY-LR and CYN induced the disruption of metaphase and anaphase spindles, causing altered cell divisions. Similar alterations could be related to decreased protein phosphatase (PP1 and PP2A) activities in shoots and roots. However, in vitro phosphatase assay with purified PP1 catalytic subunit proved that CYN in contrast to MCY-LR, decreased phosphatase activities of mustard in a non-specific way. This study intends to contribute to the understanding of the mechanisms of toxic effects of a protein phosphatase (MCY-LR) and a protein synthesis (CYN) inhibitory cyanotoxin in vascular plants.

Restricted access