Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Anne Grunau x
  • Refine by Access: All Content x
Clear All Modify Search

Within 1 week following high-dose Toxoplasma gondii infection, mice develop lethal necrotizing ileitis. However, data from a subacute T. gondii-induced ileitis model are scarce. Therefore, mice harboring a human gut microbiota were perorally infected with one cyst of T. gondii. Within 9 days post-infection, the intestinal microbiota composition shifted towards higher loads of commensal enterobacteria and enterococci. Following T. gondii infection, mice were clinically only mildly affected, whereas ≈60% of mice displayed fecal blood and mild-to-moderate ileal histopathological changes. Intestinal inflammation was further characterized by increased apoptotic intestinal epithelial cells, which were accompanied by elevated proliferating gut epithelial cell numbers. As compared to naive controls, infected mice displayed elevated numbers of intestinal T lymphocytes and regulatory T-cells and increased pro-inflammatory mediator secretion. Remarkably, T. gondii-induced apoptotic and pro-inflammatory immune responses were not restricted to the gut, but could also be observed in extra-intestinal compartments including kidney, liver, and lung. Strikingly, low-dose T. gondii infection resulted in increased serum levels of pro- and anti-inflammatory cytokines. In conclusion, the here presented subacute ileitis model following peroral low-dose T. gondii infection of humanized mice allows for detailed investigations of the molecular mechanism underlying the “ménage à trois” of pathogens, human gut microbiota, and immunity.

Open access

The rising incidences of infections with multidrug-resistant (MDR) Gram-negative bacteria including Pseudomonas aeruginosa (PA) have gained increasing attention in medicine, but also in the general public and global health politics. The mechanisms underlying opportunistic pathogen—host interactions are unclear, however. To address this, we challenged secondary abiotic IL10−/− mice deficient for Toll-like receptor-4 (TLR4−/− × IL10−/−), the main receptor of the Gram-negative cell wall constituent lipopolysaccharide, with a clinical MDR PA isolate. Despite higher intestinal colonization densities, apoptotic colonic epithelial cell numbers were lower in TLR4−/− × IL10−/− mice as compared to IL10−/− controls at day 14 postinfection (p.i.), whereas proliferating/regenerating cells had increased in the latter only. Furthermore, PA-colonized TLR4−/− × IL10−/− mice displayed less distinct innate and adaptive immune cell responses in the colon as compared to IL10−/− counterparts that were accompanied by lower nitric oxide concentrations in mesenteric lymph nodes in the former at day 14 p.i. Conversely, splenic NO levels were higher in both naive and PA-colonized TLR4-deficient IL10−/− mice versus IL10−/− controls. Remarkably, intestinal MDR PA was able to translocate to extra-intestinal including systemic compartments of TLR4−/− × IL10−/− mice only. Hence, MDR PA-induced intestinal and systemic immune responses observed in secondary abiotic IL10−/− mice are TLR4-dependent.

Open access