Search Results
You are looking at 1 - 10 of 11 items for
- Author or Editor: B Goswami x
- Refine by Access: All Content x
Abstract
Present status of work on charge and mass distribution in medium energy fission of compound nuclei produced using various target projectile combinations is reviewed. Systematics of charge distribution parameters and their dependence on excitation energy of the fissioning nucleus is presented. Variation of mass distribution with excitation energy and mass and charge of the fissioning nucleus is discussed. Qualitative explanation of the data has been sought in terms of existing theories of fission. The importance of charge and mass distribution studies in identifying the different reaction mechanisms in heavy ion induced reaction is highlighted.
Abstract
Cumulative yields of short-lived ruthenium isotopes in the thermal neutron induced fission of235U,235U and239Pu have been determined using a fast radiochemical separation technique followed by gamma spectrometry. The cumulative yields of107Ru and103Ru in233U (nth, f) and107Ru and109Ru in239Pu (nth, f) are determined for the first time. The measured cumulative yields are converted to chain yields assuming normal charge distribution systematics for comparison with the literature data on chain yields.
A number of samples from the pre-burning zone of a wet-process cement rotary kiln were examined by combined DTA/TG and XRD for estimation of spurrite (2Ca2SiO4·CaCO3). It was found that decarbonation temperatures of spurrite range from 1130 to 1190 K and they are 45 to 75 K higher than that of calcite occurring in the same sample. In the TG curves calcite and spurrite can be easily distinguished and accordingly both can be estimated from the same TG scan. Combined DTA/TG, supplemented by XRD, is a very effective method for qualitative and quantitative estimation of spurrite in cement rotary kiln materials.
Abstract
Magnesium aluminum silicate (MAS) glass samples with different concentrations of alumina (7.58 to 14.71 mol%) were prepared by melt and quench-technique. Total Mg content in the form of MgF2+MgO was kept constant at 25 mol%. MAS glass was converted into glass-ceramics by controlled heat treatment at around 950C. Crystalline phases present in different samples were identified by powder X-ray diffraction technique. Dilatometry technique was used to measure the thermal expansion coefficient and glass transition temperature. Scanning electron microscopy (SEM) was employed to study the microstructure of the glass-ceramic sample. It is seen from X-ray diffraction studies that at low Al2O3 concentrations (up to 10.5 mol%) both MgSiO3 and fluorophlogopite phases are present and at higher Al2O3 concentrations of 12.3 and 14.7 mol%, fluorophlogopite and magnesium silicate (Mg2SiO4), respectively are found as major crystalline phases. The average thermal expansion co-efficient (aavg) of the glass samples decreases systematically from 9.8 to 5.510-6C-1 and the glass transition temperature (T g) increases from 610.1 to 675C with increase in alumina content. However, in glass-ceramic samples the aavg varies in somewhat complex manner from 6.8 to 7.910-6C-1 with variation of Al2O3 content. This was thought to be due to the presence of different crystalline phases, their relative concentration and microstructure.
Abstract
Formation cross sections of several fission products have been determined using recoil catcher technique followed by gamma-ray spectrometry in 12C induced fission of 232Th at E lab = 72 MeV, corresponding to E cm just above the Coulomb barrier. The measured formation cross sections were used to get the mass distribution by using known charge distribution systematic. Critical data analysis was carried out to look for the signatures of transfer induced fission. However, within the experimental uncertainty of about 10%, no clear indication of transfer induced fission could be seen at this energy level. The mass distribution shows a single peaked broad Gaussian distribution with the most probable mass of 119.5±1.1 and FWHM of 40.6 mass units. The total fission cross section computed from the mass distribution curve is 771±50 mb.
Abstract
Using radiochemical and gamma spectrometric technique the branching fractions in the beta decay of117Cd isomers and the internal transition branching of117mIn have been established. The beta branching fraction of117gCd
117gIn was obtained as 0.86±0.06 and the value of117mCd
117gIn was found to be less than 1%. The internal transitin branching and the isomer cross-section ratio were obtained as 0.31±0.02 and 0.197±0.002, respectively. From the measured isomer cross-section ratio the spin cut-off parameter was evaluated, which agreed with the value reported in the literature.
Background
Premenopausal women show a higher incidence of orthostatic hypotension than age-matched men, but there are limited data available on sex differences in cardiovascular responses to orthostatic challenge in healthy older persons. We investigated sex differences in hemodynamic and autonomic responses to orthostatic challenge in healthy older males and females.
Materials and methods
Fourteen older healthy women and 10 age-matched men performed a sit-to-stand test (5 min of sitting followed by 5 min of standing). A Task Force® Monitor continuously measured the following beat-to-beat hemodynamic parameters: heart rate, systolic blood pressure, diastolic blood pressure, mean blood pressure, stroke index, cardiac index, and total peripheral resistance index. Cardiac autonomic activity, low-frequency (LF: 0.04–0.15 Hz) normalized (LFnuRRI) and high-frequency (HF: 0.15–0.4 Hz) normalized (HFnuRRI) components, and the ratio between LF and HF power (LF/HF) were calculated using power spectral analysis of heart rate variability.
Results
Across all hemodynamic parameters, there were no significant differences between the sexes at baseline and during standing. LFnuRRI (median: 70.2 vs. 52.3, p < 0.05) and LF/HF ratio (median: 2.4 vs. 1.1, p < 0.05) were significantly higher, whereas HFnuRRI (median: 29.8 vs. 47.7, p < 0.05) was lower among women at baseline. All other heart rate variability measures did not differ between the sexes.
Conclusions
The data indicate that older women showed higher sympathetic and lower parasympathetic activity at rest compared to age-matched men. These results are contradictory to the observations from previous studies, which showed a reduced sympathetic and enhanced parasympathetic activity in women in all ages. Further studies are required to determine the underlying mechanisms contributing to higher incidence of orthostatic hypotension in older females.
Rapid economic and industrial growths imposed significant impact on human health including the pulmonary health. Questions were raised regarding the validity of the existing prediction norms of pulmonary function tests (PFTs) in a particular population. The present study was conducted to investigate the applicability of the existing norms for PFTs in young healthy non-smoking female university students of Kolkata, India. Significant difference was noted in vital capacity (VC), forced vital capacity (FVC), and forced expiratory volume in 1 s (FEV1) when the present data were compared with the earlier study in similar population. Correlation statistic revealed significant relationship of age and body height with all the PFT parameters. Body mass had significant correlation with VC, FVC, FEV1 as a percentage of FVC (FEV1%), and peak expiratory flow rate (PEFR). Regression equations have been computed for predicting PFTs from age and body height. There has been a change of PFTs in the studied population for the last couple of decades due to increased environmental pollution in the course of economical and industrial developments. Regression equations computed in this study are not only recommended to predict PFT parameters in the studied population, but they are also considered more reliable owing to their substantially smaller standard error of estimate than those proposed in the previous study.
Abstract
The guided thermal neutron beam at 100 MW Dhruva research reactor facility of Bhabha Atomic Research Centre (BARC) was used to carry out prompt gamma-ray neutron activation analysis (PGNAA). The prompt k 0-factors have been determined for the isotopes of the elements H, B, K, Co, Cu, Ca, Ti, Cr, Cd, Ba, Hg and Gd with respect to 1951 keV gamma-line of 36Cl. The prompt k 0-factors for H, Cl and Cu were also measured with respect to the 1381 keV gamma-line of 49Ti. Different samples like NH4Cl, Ti metal, cobalt chloride and other stoichiometric compounds and pure metals were used for this purpose. Prompt gamma-rays were accumulated using a 22% HPGe detector connected to a PC based 8k MCA in single mode counting. The energy calibration in the range of 100–8500 keV was carried out using gamma-rays from 152Eu and 60Co, and the prompt gamma-rays from 36Cl whereas the absolute detection efficiency for this energy range was determined using 152Eu and prompt gamma-rays from 36Cl and 49Ti.
Abstract
The reaction cross-sections for 64Ni(n, γ) 65Ni at E n = 0.025 eV and 58Ni (n, p) 58Co at E n = 3.7 MeV have been experimentally determined using activation and off-line γ-ray spectrometric technique. The thermal neutron flux used is from the thermal Column of the reactor APSARA at BARC, Mumbai, whereas the neutron energy of 3.7 MeV is from the 7Li(p, n) reaction at Pelletron facility, TIFR, Mumbai. The 64Ni(n, γ) 65Ni and 58Ni(n, p) 58Co reactions cross-sections from present work are compared with the available literature data and found to be in good agreement. The 58Ni(n, p) 58Co reaction as a function of neutron energy is also calculated theoretically using TALYS computer code version 1.2 and found to be higher than the experimental data.