# Search Results

## You are looking at 1 - 4 of 4 items for

• Author or Editor: B. Uhrin
• Refine by Access: All Content
Clear All Modify Search

## A description of the segment [1,T], where T is the meeting number of a set-lattice

Periodica Mathematica Hungarica
Author:
B. Uhrin
Restricted access

## Some useful estimations in the geometry of numbers

Periodica Mathematica Hungarica
Author:
B. Uhrin
Restricted access

## Проекционные миниму мы симметричного вып уклого тела

Analysis Mathematica
Author:
B. Uhrin
Restricted access

## A class of inequalities for non-negative sequences

Analysis Mathematica
Author:
B. Uhrin
В работе для неотрица тельных последовате льностей (...,a −1 i ), aa 0 i ),a 1 i ), ...), удовлетв оряющих условию (i=1,...,т), доказ а но неравенство(1)
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\begin{gathered} \mathop \sum \limits_{k = - \infty }^\infty \mathop {\sup }\limits_{k \leqq k_1 + \ldots + k_m \leqq k + l} (a_{k_1 }^{(1)} \ldots a_{k_m }^{(m)} ) \geqq \hfill \\ \geqq \mathop \prod \limits_{i = 1}^m (\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )\left[ {\mathop \sum \limits_{i = 1}^m \frac{{\mathop \sum \limits_{k = - \infty }^\infty (a_k^{(i)} )^{p_i } }}{{(\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )^{p_i } }} + l - m + 1} \right], \hfill \\ \end{gathered}$$ \end{document}
Restricted access