Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: B. Xue x
- Refine by Access: All Content x
Abstract
A procedure for the determination of lead in various biological and environmental samples by203Pb radioisotope dilution substoichiometric method is presented. The accuracy of the method by comparison with the literature values of reference materials appears to be good. The standard deviation of the method is less than 10%, and detection limit is about 0.1 g of lead.
Abstract
The heat capacities of chrysanthemic acid in the temperature range from 80 to 400 K were measured with a precise automatic adiabatic calorimeter. The chrysanthemic acid sample was prepared with the purity of 0.9855 mole fraction. A solid-liquid fusion phase transition was observed in the experimental temperature range. The melting point, T m, enthalpy and entropy of fusion, Δfus H m, Δfus S m, were determined to be 390.7410.002 K, 14.510.13 kJ mol-1, 37.130.34 J mol-1 K-1, respectively. The thermodynamic functions of chrysanthemic acid, H (T)-H(298.15), S (T)-S(298.15) and G (T)-G (298.15) were reported with a temperature interval of 5 K. The TG analysis under the heating rate of 10 K min-1 confirmed that the thermal decomposition of the sample starts at ca. 410 K and terminates at ca. 471 K. The maximum decomposition rate was obtained at 466 K. The purity of the sample was determined by a fractional melting method.
Abstract
The heat capacities of trans-(R)-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylic acid in the temperature range from 78 to 389 K were measured with a precise automatic adiabatic calorimeter. The sample was prepared with the purity of 0.9874 mole fraction. A solid-liquid fusion phase transition was observed in the experimental temperature range. The melting point, T m, enthalpy and entropy of fusion, Δfus H m, Δfus S m, were determined to be 344.75±0.02 K, 13.75±0.07 kJ mol−1, 39.88±0.21 J K−1 mol−1, respectively. The thermodynamic functions of the sample, H (T)-H (298.15), S (T)-S (298.15) and G (T)-G (298.15), were reported with a temperature interval of 5 K. The thermal decomposition of the sample was studied by TG analysis, the thermal decomposition starts at ca. 421 K and terminates at ca. 535 K, the maximum decomposition rate was obtained at 525 K. The order of reaction, pre-exponential factor and activation energy, are n=0.14, A=1.15·108 min−1, E=66.27 kJ mol−1, respectively.
Abstract
The heat capacities of fenpropathrin in the temperature range from 80 to 400 K were measured with a precise automatic adiabatic calorimeter. The fenpropathrin sample was prepared with the purity of 0.9916 mole fraction. A solid—liquid fusion phase transition was observed in the experimental temperature range. The melting point, T m, enthalpy and entropy of fusion, fus H m, fus S m, were determined to be 322.48±0.01 K, 18.57±0.29 kJ mol–1 and 57.59±1.01 J mol–1 K–1, respectively. The thermodynamic functions of fenpropathrin, H (T)—H (298.15), S (T)—S (298.15) and G (T)—G (298.15), were reported with a temperature interval of 5 K. The TG analysis under the heating rate of 10 K min–1 confirmed that the thermal decomposition of the sample starts at ca. 450 K and terminates at ca. 575 K. The maximum decomposition rate was obtained at 558 K. The purity of the sample was determined by a fractional melting method.