Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Bao Qiong Li x
  • Refine by Access: All Content x
Clear All Modify Search


A new method for the analysis of four target flavonoids in two kinds of citrus samples by ultra-high performance supercritical fluid chromatography (UHPSFC) method was developed. Main variables affecting the UHPSFC separation were optimized, and under the optimized conditions the four target compounds (tangeretin, nobiletin, hesperetin and naringenin) can be separated within 10 min. The UHPSFC method allowed the determination of the four target compounds in the diluted stock solutions with limit of detection (LOD) ranging from 1.08 to 2.28 μg mL−1, and limit of quantification (LOQ) ranging from 1.45 to 4.52 μg mL−1, respectively. The coefficients of determination (R 2) of the calibration curves were higher than 0.9950. The recoveries of the four target compounds at three different concentrations were in the range of 82.4–117.6%. The validation results demonstrated that the proposed method is simple, accurate, time-saving and environment friendly, and it is applicable to a variety of complex samples such as medicine-food dual purpose herbs and functional foods.

Open access

Diabetes mellitus and concurrent hypertension disorder are dreadful all over the world and are often managed by some drugs, such as metformin hydrochloride (MFH), enalapril maleate (ENM), and captopril (CAP). In this work, a reliable and fast quantitative analysis of these three components in tablets was carried out by Tchebichef image moment method and multivariate curve resolution with alternating least squares on three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with photodiode array detection (HPLC-PAD). 3D spectra were obtained within only 2 min, and linear quantitative models were established by stepwise regression based on the calculated image moments. Among these two methods, Tchebichef image moment method showed outcome distinction. The correlation coefficients of cross-validation (R Loo-cv) are more than 0.988, while their recoveries are 100.1 ± 1.7% (MFH), 95.4 ± 5.4% (ENM), and 105.3 ± 5.7% (CAP), respectively. The intra- and inter-day precisions (RSD) are less than 5.42%. The proposed methods were also applied to the analysis of real tablets. This study reveals the effectiveness and convenience of the proposed image-moment method that may be a potential technology for the quality control and investigation of drugs in routine analysis.

Open access