Search Results

You are looking at 1 - 10 of 22 items for

  • Author or Editor: Barbara Pacewska x
  • Refine by Access: All Content x
Clear All Modify Search
Journal of Thermal Analysis and Calorimetry
Authors:
Barbara Pacewska
and
Dariusz Szychowski
Restricted access

Abstract  

The purpose of this study was a preliminary evaluation of mineral-carbon sorbents preparation possibility by the method of thermal decomposition of a mixture of aluminium oxide or hydroxide and acenaphthene and determination of their physicochemical properties. The conditions of carbonization were established and the changes of physicochemical properties of obtained materials as a function of organic substance content in the mineral-carbon mixture before the process of carbonization were tracked. In these investigations the methods of thermal analysis, low-temperature nitrogen adsorption and benzene vapors adsorption were applied.

Restricted access

Summary An attempt was made to obtain mineral-carbon sorbents from waste products of petrochemical industry: lime from the decarbonization of river water to be used in technology and hydrocarbon wastes obtained in the treatment of industrial waste waters. The sorbents were prepared by thermal decomposition of mixtures of the mineral and carbon components. In order to optimize the preparation conditions, physicochemical studies were performed of both the mineral matrix and the mineral-carbon sorbents. Adsorption measurements involving nitrogen, water, and benzene as adsorbates were used for determining the parameters of porous structure of the obtained materials and their hydrophilic-hydrophobic properties. The properties influencing the sorptive properties of the organic compounds present in the petrochemical wastes were pointed out.

Restricted access

The course of thermal decomposition of basic aluminium ammonium sulfate was investigated. Temperature ranges were established in which dehydration of the compound and liberation of ammonia and sulfur oxides take place. The presented scheme of thermal dissociation of the basic salt was based on the determination of the solid and gaseous products of the reaction.

Restricted access

Investigations were carried out on the kinetics of thermal decomposition of basic aluminium ammonium sulfate in vacuum. The kinetic model of dissociation of the compound was identified. The results of the kinetic studies and the mechanism of the process are discussed.

Restricted access

Abstract

The purpose of this study was to determine the possibility of producing hydrophobic mesoporous mineral-carbon sorbents from aluminum hydroxide and coal-tar pitch-polymer compositions by carbonization at 600 °C in an nitrogen atmosphere. The method of homogenization was optimized using different solvents. Blends of aluminum hydroxide and coal-tar pitch with a definite composition or the products of co-precipitation of aluminum hydroxide in the coal-tar pitch-polymer medium were subjected to carbonization process. The hydrophilic–hydrophobic properties were evaluated by adsorption of water vapors. The highest value of BET surface area about 370 m2/g, was achieved for the carbonization product obtained from co-precipitated raw components with 10 wt% coal-tar pitch-polymer compositions.

Restricted access
Restricted access

Abstract  

The aim of this work is to compare the influence of addition of waste aluminosilicate catalyst on the initial periods of hydration of different cements, i.e. calcium aluminate cements of different composition and Portland cement, basing on the calorimetric studies. Cement pastes containing up to 25 mass% of additive were studied, where the water/(cement+additive) ratio was 0.5. An attempt was undertaken to explain the mechanism of action of introduced aluminosilicate in the system of hydrating cement, particularly in the case of calcium aluminate cement pastes. It was found that the presence of fine-grained additive caused in all studied cases the increase of the amount of released heat in the first period after the addition of water. In the case of aluminate cements with aluminosilicate addition, a significant reduction of induction time and faster precipitation of hydration products were observed compared to the reference sample (without additive). In the experimental conditions, the additive caused the acceleration of aluminate cements hydration, and the mechanism of its action is probably complex and can encompass: nucleative action of small grains and formation of new chemical compounds.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
Barbara Pacewska
,
D. Szychowski
, and
A. Wendt
Restricted access