Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Beáta Bényi x
Clear All Modify Search

The Bn (k) poly-Bernoulli numbers — a natural generalization of classical Bernoulli numbers (B n = Bn (1)) — were introduced by Kaneko in 1997. When the parameter k is negative then Bn (k) is a nonnegative number. Brewbaker was the first to give combinatorial interpretation of these numbers. He proved that Bn (−k) counts the so called lonesum 0–1 matrices of size n × k. Several other interpretations were pointed out. We survey these and give new ones. Our new interpretation, for example, gives a transparent, combinatorial explanation of Kaneko’s recursive formula for poly-Bernoulli numbers.

Restricted access