Search Results

You are looking at 1 - 10 of 23 items for

  • Author or Editor: Bo Li x
Clear All Modify Search

Abstract

In this study, the solid-state shear pan-milling was employed to prepare a series of polymer/layered silicate (PLS) nanocomposites. During the process of pan-milling at ambient temperature, poly(vinyl alcohol)/organic montmorillonite (PVA/OMMT) can be effectively pulverized, resulting in coexistence of intercalated and exfoliated OMMT layers. The obtained PLS nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM analysis indicated that OMMT dispersed homogeneously in PVA matrix and XRD results illustrated that pan-milling had an obvious effect on increase in the interlayer spacing of OMMT, and resulted in coexistence of intercalated and exfoliated OMMT layers formed. Thermal gravimetric analysis showed that thermal stability of PVA was improved owing to the incorporation of OMMT. Thermal decomposition kinetics of PVA/OMMT nanocomposites with different milling cycles of OMMT was also studied. Two types of OMMT are chosen to compare the effect of hydrophilicity of OMMT on PVA/OMMT nanocomposites.

Restricted access

Abstract  

Li2O–Al2O3–SiO2 glass-ceramics were prepared with Ta2O5 as nucleating agent, the crystallization mechanism and microstructure evolution were investigated by DTA, XRD, and SEM technologies. With increasing amount of Ta2O5 from 2 to 6 mol%, the crystallization activation energy decreased from 297.73 to 218.66 kJ mol−1, while the crystallization index increased from 1.76 to 3.39. In addition, the cluster of dendritic crystals and lamellar structure obtained in T-2 glass-ceramics indicated a typical two-dimensional crystallization mechanism, and the formation of spherical β-quartz solid solution in T-4 specimens, with average size of 50–70 nm, was mainly due to bulk crystallization mechanism. It was considered that Ta2O5 promoted the nucleation and crystallization of LAS glass by precipitating the crystalline precursor phase of Ta2O5, which acted as nuclei for the subsequent crystal growth. Eventually, the diffusion and crystallization process, microstructure morphology, as well as the secondary grain growth were also investigated.

Restricted access

Abstract

To investigate the prevalence and characteristics of the practice of explicitly giving authors equal credit in publications of major anesthesiology journals. Four major anesthesiology journals (Anesthesia and Analgesia (AA), Anesthesiology, British Journal of Anaesthesia (BJA) and Pain) were searched manually to identify original research articles published between January 1st, 2001 and December 31st, 2010 with respect to equally credited authors (ECAs). It was found that all journals explicitly gave authors equal credit, and articles with ECAs accounted for a greater proportion of the total number of articles published in each journal in 2010 versus that in 2000 (AA: 3.3% vs. 0%; Anesthesiology: 7.1% vs. <1%; BJA: 5.7% vs. 0%; Pain: 11.0% vs. <1%). The number of ECAs articles tended to increase significantly yearly in all journals (P < 0.0001 for each journal). The first two authors in the byline received equal credit in most cases. Furthermore, the ECAs articles involved institutions from different countries and regions and were sponsored by various funds. However, no specific guidance concerning this practice was provided in the instructions to authors in the four journals. It is increasingly common to give authors equal credit in original research articles in major anesthesiology journals. Detailed guidelines regarding this practice are warranted in future.

Restricted access

A sensitive, stability-indicating reversed-phase high-performance liquid chromatography with diode array detection (HPLC–DAD) method has been developed for the determination of TBI-166 and its 10 kinds of related impurities. Chromatographic separation was achieved on a Kromasil ODS column (250 mm × 4.6 mm, 5 μm), with a gradient elution of the mobile phase system consisting of acetonitrile and 1% ammonium formate solution (with 0.2% formic acid). The flow rate was 1.0 mL/min, and the detection wavelength was set at 251 nm. The method was validated according to the International Conference on Harmonization (ICH) guidelines with respect to selectivity, linearity, limits, accuracy, precision, and robustness. The calibration curves were linear from LOQ to 150% of the specification limit of impurity with correlation coefficients not less than 0.999. The limits of quantitation were between 0.123 and 0.257 μg/mL. Accuracy for the related substances was estimated by the recovery ranged from 94.6% to 111.2%. The method was proved to be reliable for the determination of related substances in TBI-166 bulk drug, which is essential and important in the quality control.

Open access

Abstract

Sol–gel Co/SiO2 catalysts were prepared using Co–en (ethylenediamine) complex precursors with different cobalt introduction order. More highly reduced catalysts were obtained by gelling the silica support followed by depositing cobalt nanoparticles on silica surface, and then catalysts exhibited higher FT activity and concomitant higher C18+ selectivity. Meanwhile, both series of catalysts prepared with en/Co molar ratio of 2/1 exhibited higher activity due to their high cobalt reduction.

Restricted access

Abstract  

Atmospheric aerosols are generally collected on filters according to the International Monitoring System (IMS) designed in the Comprehensive Nuclear-Test-Ban Treaty (CTBT). More information could be revealed when the filter sample is pretreated rather than measured directly by g-ray spectrometer. Microwave-assisted extraction (MAE) is a suitable method that gives higher recoveries of elements from glass fibrous filters under different conditions. The results indicate that the MAE is a highly efficient and robust method for the treatment of glass fibrous filter samples. The recoveries of potential fission products from glass fibrous filter samples by microwave-assisted extraction meet the efficiency of the extraction by both aqua regia and 2% HCl.

Restricted access

Abstract

This paper reports the crystallization behavior of maleic anhydride grafted poly(propylene) (PP-MA) with an aryl amide derivative (TMB-5) as β-phase nucleating agent (β-NA). The isothermal and nonisothermal crystallization behaviors of PP-MA and nucleated PP-MA are comparatively researched based on the concentration of β-NA of 0.2 wt%. Subsequent melting behaviors after isothermal and nonisothermal crystallization process are also investigated to explore the crystalline structures formed during the crystallization. The results indicate that TMB-5 is an efficient β-NA in influencing the crystallization of PP-MA through increasing the crystallization rate and decreasing the fold surface free energy, leading to large amounts of β-phase formation during the crystallization process.

Restricted access

Abstract  

An on-line solid phase micro-column extraction and determination system for trace Cd and Pb in nuclear fuel grade uranium compounds was established. The preconcentration of trace elements Cd and Pb from uranium compounds was achieved by adsorbing Cd and Pb on CL-7301 resin in hydroiodic acid media, while the uranyl ion passed through. The method coupled with flame atomic absorption spectrometry (FAAS) was applied to analysis trace Cd and Pb in real samples. The preconcentration factors obtained by this method were 320 and 180 each for Cd and Pb, respectively. Under the optimized conditions, the detection limits corresponding to three times the standard deviation of the blank were found to be 0.13 ng·mL−1 and 0.37 ng·mL−1 for Cd and Pb, respectively. The relative standard deviation (RSD) and the recoveries of standard addition (spiked with 1–5 ng of Cd and Pb) were of <5% (n = 10) and 96.2%–102.3%, respectively. Precision was also evaluated and found to be ≤4.3% (N = 11). The proposed method was successfully used for the determination of trace Cd and Pb in commercially available uranium compounds (e.g., uranyl acetate and triuranium octoxide).

Restricted access

Abstract

Splenic lymphocytes play an important role in host acute or chronic diseases. The abnormality of these cells in the spleens of humans might lead to some riskful diseases for human. Hence, in this study, the effects of two ginsenosides Rg1 and Rb1 on splenic lymphocytes growth were studied by microcalorimetry. Some qualitative and quantitative information, such as the metabolic power-time curves, growth rate constant k, maximum heat-output power of the exponential phase P max, total heat output Q t of splenic lymphocytes were obtained to present the effects of Rg1 and Rb1 on these cells. The values of k, P max, and Q t from the thermogenic growth curves of splenic lymphocytes were found to increase in the presence of Rg1, while the change was adverse for Rb1, illustrating that Rg1 had promotion effect and Rb1 had inhibitory effect on splenic lymphocytes growth and these promotion or inhibitory effects were enhanced with increasing the concentration of the two compounds, respectively. The microcalorimetric results were confirmed by MTT assay for determining the MTT optical density (OD) value and [3H] Thymidine incorporation assay ([3H]-TdR) for determining the count per minute (cpm) value: Rg1 could increase the MTT OD value and the cpm value of [3H]-TdR incorporation into splenic lymphocytes, and these values were increased with increasing the concentration of this compound, while Rb1 had the adverse results. The structure–activity relationships showed that the glucopyranoside and hydroxyl groups at the dammarane-type mother nucleus skeleton might play a crucial role for the opposing effects of the two ginsenosides on splenic lymphocytes. Compared with the other two assay methods, the microcalorimetric method provided more useful and reliable information for quickly and objectively evaluating the effects of drugs or compounds on the living cells, which would be a highly promising analytical tool for the characterization of the biological process and the estimation of the drugs’ efficiency.

Restricted access

Abstract

In this study, the activities of four ginsenosides Rc, Re, Rd, and Rf on splenic lymphocytes growth were studied by microcalorimetry. Some qualitative and quantitative information, such as the metabolic power–time curves, growth rate constant k, maximum heat-output power of the exponential phase P max and the corresponding appearance peak time t max, total heat output Q t, and promotion rate R p of splenic lymphocytes growth affected by the four ginsenosides were calculated. In accordance with thermo-kinetic model, the corresponding quantitative relationships of k, P max, t max, Q t, R p, and c were established. Also, the median effective concentration (EC50) was obtained by quantitative analysis. Based on both the quantitative quantity–activity relationships (QQAR) and EC50, the sequence of promotion activity was Rc > Re > Rd > Rf. The analysis of structure–activity relationships showed that the number, type, and position of sugar moieties on the gonane steroid nucleus had important influences on the promotion activity of Rc, Re, Rd, and Rf on splenic lymphocytes growth. Microcalorimetry can be used as a useful tool for determining the activity and studying the quantity–activity relationship of drugs on cell.

Restricted access