Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: C. Abdelly x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The extraction of Pa(V) from strongly acidic solutions of mineral acids is carried out with benzene solution of thenoyltrifluoroacetone. To interpret the data obtained, two extraction mechanisms representing the descending and ascending parts of the extraction curves are suggested. At lower acidity, the formation of PaO(TTA)3·HTTA species predominates. In going to higher acidity, an ion-pair formation between anionic protactiniuminorganic complex species and H2 TTA+ cation is assumed.

Restricted access

Abstract  

Studies on (C6H5)4 AsCl extraction of233Pa,233U,234Th,95Zr,95Nb and Eu from hydrochloric acid solutions, oxalic acid solutions, as well as binary mixtures, of the two acids have been undertaken. Studies from HCl solutions indicated that tetraphenylarsonium is an efficient solvent for Pa, U and Nb while Zr, Eu, Th and Np have rather low extraction coefficients. Studies from H2C2O4 indicated again negligible extraction for Eu, Np and Zr, while Pa, U and Nb have considerable distribution coefficients characterized by certain maxima. Extraction data from binary mixtures of HCl and H2C2O4 suggest possible purification procedures for the investigated elements.

Restricted access

Interaction of salinity, nitrate, light, and seed weight on the germination of Crithmum maritimum was investigated. Seeds of three size categories were germinated at 0–200 mM NaCl with either 0, 5 or 20 mM KNO 3 . Experiments were done under darkness, white light, or red light. Regardless of seed weight, germination was maximal in distilled water. Under salinity, the smallest seeds showed the highest germination percentage. Salt impact was amplified by darkness, but was mitigated by nitrate supply, red light and their combination. At the same PPFD, germination of T2 seeds was higher, when exposed to red light than under white light, suggesting that germination was more influenced by the light type than by the PPFD. As a whole, not only salinity, nutrient availability, seed weight, and light, but also their interaction may control the germination of this halophyte.

Restricted access
Acta Biologica Hungarica
Authors:
Nehla Labidi
,
Sana Snoussi
,
Manel Ammari
,
Wissal Metoui
,
N. Ben Yousfi
,
Lamia Hamrouni
, and
C. Abdelly

The aim of this study was to identify the relationship between the adaptive processes of Suaeda fruticosa for Pi acquisition and the physic-chemical and biological characteristics of two soil types under moderate and high saline conditions. Four treatments were established in pots: namely SS100, SS600, CS100 and CS600 where SS stood for sandy soil and CS for calcareous soil, and the indexes 100 and 600 were NaCl concentrations (mM) in irrigation distilled water. Assuming that Pi per g of plant biomass is an indicator of plant efficiency for P acquisition, the results showed that Pi acquisition was easiest on SS100 and was difficult on CS100. The differences in Pi acquisition between plants on SS100 and CS100 could be attributed to the low root surface area (−30%) and to the low alkaline phosphatases (Pases) activities (−50%) in calcareous rhizospheric soil. The high salinity level had no effect on the efficiency of P acquisition on SS but increased this parameter on CS (+50%). In the latter soil type, high acid phosphatase activities were observed in rhizospheric soil at high salinity level. Acid phosphatase seemed to be secreted from the roots. The higher secretion of acid phosphatase in this soil was related to the root lipid peroxidation in response to elevated salinity associated with the augmentation of unsaturated acids which might induce an oxidative damage of the root membrane. Thus we can conclude that in deficient soil such as calcareous, the efficiency of P acquisition in S. fruticosa which was difficult at moderate salinity level can be enhanced by high salinity level.

Restricted access

Cotula coronopifolia is a wild annual Asteraceae that grows in periodically-flooded prone environments and seems highly tolerant to periodic flooding. Seedlings of about 15 cm were collected directly from the edge of Soliman sabkha (N-E Tunisia, semi-arid stage) and grown under greenhouse conditions. Two treatments were considered: drainage and flooding. After 56 days of treatment, flooded plants showed a pronounced growth increase. This performance was essentially associated with significant increment in biomass production of both shoots and roots (about 220% of the control). The appropriate response to flooding was also characterized by the ability of the species to maintain its water status under such conditions. Neither water content nor water potential showed a significant variation as compared to those of non-flooded plants. However, transpiration rate decreased slightly but significantly in flooded plants (from 0.86 to 0.64 mmol H2O m−2 s−1). Na+ and K+ concentrations were practically maintained under waterlogging conditions, except a significant increase of Na+ content in roots of flooded plants (157% of the control). These responses were concomitant with maintenance of photosynthetic rate. However, the contents of chlorophylls a and b increased to 167% and 295%, respectively. It seems that the enhancement in these photosynthetic pigments together with a significant improvement in water use efficiency (from 4.66 to 6.07 mmol CO2 mol−1 H2O) allowed to the species to compensate the decrease in photosynthetic rate. At the anatomical level, this species responded to flooding by a significant development of its root aerenchyma (+63%) and an increase in the lignification of its stem xylem tissues (+37%). Based on the presented data, the plant fitness under flooding conditions was a result of dynamic readjustment of several morphological, physiological, and anatomical adaptive traits. Flood requirement together with salt tolerance are responsible for the predominance of C. coronopifolia in a large area in its natural biotope where most plants cannot tolerate interactive effects of flooding and salinity.

Restricted access

The halophyte Crithmum maritimum thrives in cracks of calcareous rocks or cliffs at seashores, a situation which associates limited phosphorus availability and high salinity. In order to understand the common patterns of colonization and zonation of this species, seedlings were cultivated for 34 d in inert sandy soil irrigated with a nutrient solution containing or not phosphorus at moderate (50 mM) or high (250 mM) NaCl level. Net assimilation rate and consequently relative growth rate increased in response to P deprivation at moderate saline level, but not at high salinity level. Parallelly, CO2 fixation rate, rubisco capacity, transpiration rate and stomatal conductance were diminished by P deprivation at moderate NaCl level. Intercellular CO2 concentration was therefore not affected. Chlororophyll fluorescence analysis revealed that photosynthetic systems were insensitive to change in P availability at moderate salinity level: neither pigment content, nor effective and maximum quantum yield, photochemical and non photochemical quenching, and electron transport rate were affected by P deprivation. On the contrary, at high salinity level when net photosynthesis, rubisco capacity and the quantum yields of PS2 were severely affected, P deprivation strongly augmented electron transport rate. Stomatal aperture and more modest increase in net photosynthesis, rubisco capacity, photosystem II effective quantum yield and photochemical quenching accompanied this response. This study shows the tolerance of C. maritimum to the phosphorus deprivation combined to moderate or to high saline level which may explain the common patterns of colonization and zonation of this species.

Restricted access
Acta Biologica Hungarica
Authors:
Nehla Labidi
,
Manel Ammari
,
Dorsaf Mssedi
,
Maali Benzerti
,
Sana Snoussi
, and
C. Abdelly

Suaeda fruticosa is a perennial “includer” halophyte devoid of glands or trichomes with a strong ability of accumulating and sequestrating Na + and Cl . We were interested in determining whether leaf cuticle salt excretion could be involved as a further mechanism in salt response of this species after long-term treatment with high salinity levels. Seedlings had been treated for three months with seawater (SW) diluted with tap water (0, 25, 50 and 75% SW). Leaf scanning electron microscopy revealed a convex adaxial side sculpture and a higher accumulation of saline crystals at the lamina margin, with a large variability on repartition and size between treatments. No salt gland or salt bladder was found. Threedimensional wax decorations were the only structures found on leaf surface. Washing the leaf surface with water indicated that sodium and chloride predominated in excreted salts, and that potassium was poorly represented. Optimal growth of whole plant was recorded at 25% SW, correlating with maximum Na + and Cl absolute secretion rate. The leaves of plants treated with SW retained more water than those of plants treated with tap water due to lower solute potential, especially at 25% SW. Analysis of compatible solute, such as proline, total soluble carbohydrates and glycinebetaine disclosed strong relationship between glycinebetaine and osmotic potential (r = 0.92) suggesting that tissue hydration was partly maintained by glycinebetaine accumulation. Thus in S. fruticosa , increased solute accumulation associated with water retention, and steady intracellular ion homeostasis confirms the “includer” strategy of salt tolerance previously demonstrated. However, salt excretion at leaf surface also participated in conferring to this species a capacity in high salinity tolerance.

Restricted access
Acta Biologica Hungarica
Authors:
M. Rabhi
,
S. Hajji
,
Najoua Karray-Bouraoui
,
Deborah Giuntini
,
Antonella Castagna
,
A. Smaoui
,
Annamaria Ranieri
, and
C. Abdelly

In the present investigation, we studied uptake and management of the major cations in the xerohalophyte, Tecticornia indica (Willd.) subsp. indica as subjected to salinity. Plants were grown under greenhouse conditions at various salinity levels (0, 100, 200 and 400 mM NaCl) over 110 days. At harvest, they were separated into shoots and roots then analyzed for water contents, dry weights (DW), and Na+, K+, Ca2+, and Mg2+ contents. Plants showed a growth optimum at 200 mM NaCl and much better tissue hydration under saline than non-saline conditions. At this salt concentration (200 mM NaCl), shoot Na+ content reached its highest value (7.9 mmol · g−1 DW). In spite of such stressful conditions, salt-treated plants maintained adequate K+, Ca2+, and Mg2+ status even under severe saline conditions. This was mainly due to their aptitude to selectively acquire these essential cations and efficiently use them for biomass production.

Restricted access
Acta Biologica Hungarica
Authors:
Imène Ben Salah
,
Nahida Jelali
,
T. Slatni
,
Margaret Gruber
,
A. Albacete
,
Cristina Martínez Andújar
,
V. Martinez
,
F. Pérez-Alfocea
, and
C. Abdelly

In order to explore the relationship between leaf hormonal status and source-sink relations in the response of symbiotic nitrogen fixation (SNF) to salt stress, three major phytohormones (cytokinins, abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid), sucrose phosphate synthase activity in source leaves and sucrolytic activities in sink organs were analysed in two lines of Medicago ciliaris (salt-tolerant TNC 1.8 and salt-sensitive TNC 11.9). SNF (measured as nitrogenase activity and amount of N-fixed) was more affected by salt treatment in the TNC 11.9 than in TNC 1.8, and this could be explained by a decrease in nodule sucrolytic activities. SNF capacity was reflected in leaf biomass production and in the sink activity under salinity, as suggested by the higher salt-induced decrease in the young leaf sucrolytic activities in the sensitive line TNC 11.9, while they were not affected in the tolerant line TNC 1.8. As a consequence of maintaining sink activities in the actively growing organs, the key enzymatic activity for synthesis of sucrose (sucrose phosphate synthase) was also less affected in the mature leaves of the more tolerant genotype. Ours results showed also that the major hormone factor associated with the relative tolerance of TNC 1.8 was the stimulation of abscisic acid concentration in young leaves under salt treatment. This stimulation may control photosynthetic organ growth and also may contribute to a certain degree in the maintenance of coordinated sink-source relationships. Therefore, ABA may be an important component which conserves sucrose synthesis in source leaves.

Restricted access