Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: C. L. Tseng x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

An approach based on sequential extraction separation and the subsequent ICP-MS measurement was introduced to determine 99Tc in radioactive wastes. The radwastes were firstly alkaline-fused and the 99Tc was separated by a sequential solvent extraction prior to ICP-MS measurement. NaDDC was selected as a chelation reagent in the solvent extraction processes. The influence of HCl and matrix concentration on the recovery yield and the effectiveness of removing isobar and unwanted radionuclides, such as 137Cs, 54Mn, 60Co and 110mAg, were evaluated. The designed sequential extraction procedure was optimized by an extraction experiment. The proposed technique is proven to be a simple and practical alternative for 99Tc determination in low-level radioactive wastes; chemical separation of 99Tc can be simplified and preconcentration such as precipitation and/or ion exchange, before the solvent extraction, can be excluded.

Restricted access

Summary  

Exploratory experiments have been carried out to investigate the effects of gamma-radiation on iodine aerosols under various chemical conditions. The results indicate that iodide ions (I-) in aerosol can be readily oxidized to I2 and HIO, and some iodide ions may be converted to organic iodine when organic additives are present in the KI solution from which the aerosol is generated. The results also suggest that the chemical transformation of irradiated iodine aerosol depends on the chemical environment both carrier gas and iodide solution.

Restricted access

Abstract

Di-tert-butyl peroxide (DTBP) is an organic peroxide (OP) which has widespread use in the various chemical industries. In the past, thermal runaway reactions of OPs have been caused by their general thermal instability or by reactive incompatibility in storage or operation, which can create potential for thermal decomposition reaction. In this study, differential scanning calorimetry was applied to measure the heat of decomposition reactions, which can contribute to understand the reaction characteristics of DTBP. Vent sizing package 2 was also employed to evaluate rates of increase for temperature and pressure in decomposition reactions, and then the thermokinetic parameters of DTBP were estimated. Finally, hazard characteristics of the gassy system containing DTBP, specifically with respect to thermal criticality, were clearly identified.

Restricted access

Abstract  

Methyl ethyl ketone peroxide (MEKPO) is an unstable material above certain limits of temperature, decomposing into chain reactions by radicals. The influence of runaway reactions on this basic characteristic was assessed by evaluating kinetic parameters, such as activation energy (E a), frequency factor (A), etc., by thermal activity monitor III (TAM III). This was done under three isothermal conditions of 70, 80, and 90 °C, with MEKPO 31 mass% combined with nitric acid (HNO3 6 N) and sodium nitrate (NaNO3 6 N). Nitric acid mixed with MEKPO gave the maximum heat of reaction (△H d) and also induced serious reactions in the initial stage of exothermic process under the three isothermal temperatures. The time to maximum rate (TMR) also decreased when HNO3 was mixed with MEKPO. Thus, MEKPO combined with HNO3 6 N forms a very hazardous mixture. Results of this study will be provided to relevant plants for alerting their staff on adopting best practices in emergency response or accident control.

Restricted access