Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: C. Xie x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

We study the L p-saturation for the linear combination of Bernstein-Kantorovich operators. As a result we obtain the saturation class by using K-functional as well as some modulus of smoothness.

Restricted access

Abstract  

A new thermokinetic reduced extent method for the product inhibition of single substrate enzyme-catalyzed reactions is proposed and compared with the traditional initial rate method in this paper. The arginase-catalyzed hydrolysis of L-arginine to L-ornithine and urea was studied at 37C in 40 mM sodium barbiturate-HCl buffer solution (pH=9.4). Michaelis constant (K m) for arginine and maximum velocity (V m) of the reaction were determined by initial method and thermokinetic method. The activation of exogenous manganese to this reaction was also studied. The product inhibition constant (K P), which cannot be obtained directly from the initial rate method, was determined by thermokinetic without adding L-ornithine to the reaction system. When the concentration of Mn2+ in cell is 0.1 mM, the enzyme gets its full activity. Incubation arginase with appropriate concentration of Mn2+resulted in increased Vmax and a higher sensitivity of the enzyme to product with no change in the K m for arginine. We suggest that the exogenous manganese ions in solution have just recovered the activity of arginase, which was lost in dissolving and dilution, but no effect on the mechanism of the reaction.

Restricted access

Abstract  

Aluminum (Al) nanopowders with mean diameter of about 50 nm and passivated by alumina (Al2O3) coatings were prepared by an evaporation route: laser heating evaporation. Thermal properties of the nanopowders were investigated by simultaneous thermogravimetric-differential thermal analysis (TG-DTA) in dry oxygen environment, using a series of heating rates (5, 10, 20, 30, 50 and 90°C min−1) from room temperature to 1200°C. With the heating rates rise, the onset and peak temperatures of the oxidation rise, and the conversion degree of Al to Al2O3 varies. However, the specific heat release keeps relatively invariant and has an average value of 18.1 kJ g−1. So the specific heat release is the intrinsic characteristic of Al nanopowders, which can represent the ability of energy release.

Restricted access

Summary  

Sediment core samples were collected in the largest urban Lake Donghu (Stations I and II) in China, and the activities of 210Pb, 226Ra and 137Cs were measured by gamma-ray spectrometry. The sedimentation rates, calculated by 210Pb constant rate of supply (CRS) model, ranged from 0.11 to 0.65 (average 0.39) cm. y-1at Station I, and from 0.21 to 0.78 (average 0.46) cm. y-1at Station II. Sedimentation rate calculated by 137Cs as a time marker was 0.55 cm. y-1at Station II. Based on the average sedimentation rate, we obtained 769 and 147 t. y-1for nitrogen and phosphorus retentions in Lake Donghu sediments, respectively.

Restricted access

Abstract  

Two methods, e.g. initial rate method and thermokinetic reduced extent method were presented for studies on non-competitive inhibition. Arginase-catalyzed the hydrolysis of L-arginine toL-ornithine and urea and the inhibition of this reaction by sodium fluoride were studied in the absence and presence of exogenous of Mn2+at 37C in 40 mM sodium barbiturate-hydrochloric acid buffer solution (pH 7.4). Both methods were successively used to determine the values of K1. The advances and disadvantages of each method were compared in this paper. Exogenous Mn2+ could result in more sensitivity of arginase to F-1. Since the inhibition of arginase by F-1 depends on the pH values of the reaction system and behave as a non-competitive inhibition, it probably due to its small volume and high electronic density allow it access to the activity site of the enzyme and replaces of -OH2 (or -OH) as the bridge ligand with Mn(II, II) cluster. However, further studies are necessary to determine the modes of interaction of F-1 with bovine liver arginase.

Restricted access

Abstract  

A new unsymmetrical solid Schiff base (LLi) was synthesized using L-lysine, o-vanillin and 2-hydroxy-l-naphthaldehyde. Solid lanthanum(III) complex of this ligand [LaL(NO3)]NO3·2H2O have been prepared and characterized by elemental analyses, IR, UV and molar conductance. The thermal decomposition kinetics of the complex for the second stage was studied under non-isothermal condition by TG and DTG methods. The kinetic equation may be expressed as: dα/dt=Ae−E/RT(1−α)2. The kinetic parameters (E, A), activation entropy ΔS # and activation free-energy ΔG # were also gained.

Restricted access

Abstract  

Liquid crystalline polymer/polyamide 66 (LCP/PA66) and LCP/poly(butyl terephthalate) (LCP/PBT) blends were compounded using a Brabender Plasticorder equipped with a mixing chamber. The LCP employed was a semi-flexible liquid crystalline copolyesteramide based on 30 mol% of p-amino benzoic acid (ABA) and 70 mol% of poly(ethylene terephthalate) (PET). The Flory-Huggins interaction parameters (χ12) of the LCP/ PA66 and LCP/PBT blends are estimated by melting point depression from DSC measurement. The results indicate that c12 values all are negative for LCP/PA66 and LCP/PBT blends, and when the LCP content in these blends is more than 10 mass%, the absolute value of χ12 decreases. Thereby, we can conclude that LCP/PA66 and LCP/PBT blends are fully miscible in the molten state, the molecular interaction between the LCP and PA66 is stronger than that between LCP and PBT. As the LCP content in LCP/PA66 and LCP/PBT blends is more than 10 mass%, the molecular interaction between LCP and matrix polymer decreases.

Restricted access

Abstract

To develop thermal stable flavor, two glycosidic bound flavor precursors, geranyl-tetraacetyl-β-D-glucopyranoside (GLY-A) and geranyl-β-D-glucopyranoside (GLY-B) were synthesized by the modified Koenigs–Knorr reaction. The thermal decomposition process and pyrolysis products of the two glycosides were extensively investigated by thermogravimetry (TG), differential scanning calorimeter (DSC) and on-line pyrolysis-gas chromatography mass spectroscopy (Py-GC-MS). TG showed the T p of GLY-A and GLY-B were 254.6 and 275.7°C. The T peak of GLY-A and GLY-B measured by DSC were 254.8 and 262.1°C respectively.

Py-GC-MS was used for the simply qualitative analysis of the pyrolysis products at 300 and 400°C. The results indicated that: 1) A large amount of geraniol and few by-products were produced at 300°C, the by-products were significantly increased at 400°C; 2) The characteristic pyrolysis product was geraniol; 3) The primary decomposition reaction was the cleavage of O-glycosidic bound of the two glycosides flavor precursors. The study on the thermal behavior and pyrolysis products of the two glycosides showed that this kind of flavor precursors could be used for providing the foodstuff with specific flavor during heating process.

Restricted access

Abstract  

Soft error rate (SER) testing and measurements of semiconductor circuits with different operating voltages and operating conditions have been performed using the thermal neutron beam at the Radiation Science and Engineering Center (RSEC) at Penn State University. The high neutron flux allows for accelerated testing for SER by increasing reaction rate densities inside the tested device that gives more precision in the experimental data with lower experimental run time. The effect of different operating voltages and operating conditions on INTEL PXA270 processor has been experimentally determined. Experimental results showed that the main failure mechanism was the segmentation faults in the system. Failure response of the system to the operating conditions was in agreement with the general behavior of SERs.

Restricted access