Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: C.H. Zhao x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The concentration of radon in an underground research facility (URF) was measured by setting up 12 sampling points in the URF and with 3 different measurement methods. All the methods were calibrated in the radon laboratory of the No. 6 Institute of Nuclear Industry. The accumulation of radon in the URF was observed before a ventilation system was applied. The reduction of radon concentration in the URF by 1-hour ventilation was also observed. Experimental result indicates that the concentration of radon in the URF increased from 15 to 50 Bq·m−3 in 5 days without ventilation, and decreased to less than 10 Bq·m−3 with 1-hour ventilation. Applying the average working time of 4 hours per day of the workers in the URF, the additional effective dose is 0.75 msv·y−1 when 1 hour ventilation is applied before entering the URF and 13 mSv·y−1 without ventilation. These figures strongly suggest that for the health of the workers, ventilation in such underground research facilities is needed.

Restricted access

Summary

A high-performance liquid chromatographic (HPLC) method has been developed for separation and quantitative analysis of flavonoid aglycones in Rhododendron anthropogonosides Maxim. Flavonoids in their bound forms were hydrolyzed with acid before HPLC analysis. Analytical samples were pretreated by solid-phase extraction on C18 reversed-phase cartridges. Optimum separation on a 4.6 mm × 250 mm i.d. C18 column was achieved by use of a 52:48 (v/v) mixture of methanol and an aqueous solution of 10 mm citric acid and 1 mm sodium dodecyl sulfate as mobile phase. The flow rate was 1.0 mL min–1 and the detection wavelength 360 nm. Five flavonoids, myricetin, quercetin, luteolin, kaempferol, and isorhamnetin, were separated with high resolution without use of gradient elution. The method was successfully used for efficient quality-control analysis by quantifying flavonoids in R. anthopogonosides. Repeatability tests showed that intra-day and inter-day RSD was <10%. LOD of the five flavonoids were <0.85 μg mL–1. Recovery ranged from 90.2 to 112.5%, with RSD <11.1%.

Open access
Cereal Research Communications
Authors:
H.Q. Zhao
,
L. Wang
,
J. Hong
,
X.Y. Zhao
,
X.H. Yu
,
L. Sheng
,
C.Z. Hang
,
Y. Zhao
,
A.A. Lin
,
W.H. Si
, and
F.S. Hong

Salt stress impaired Mn imbalance and resulted in accumulation of ROS, and caused oxidative stress to plants. However, very little is known about the oxidative damage of maize roots caused by exposure to a combination of both salt stress and Mn deprivation. Thus the main aim of this study was to determine the effects of a combination of salt stress and Mn deprivation on antioxidative defense system in maize roots. Maize plants were cultivated in Hoagland’s media. They were subjected to 80 mM NaCl administered in the Mn-present Hoagland’s or Mn-deficient Hoagland’s media for 14 days. The findings indicated that the growth and root activity of maize seedlings cultivated in a combination of both salt stress and Mn deprivation were significantly inhibited; the compatible solute accumulation, malondialdehyde, carbonyl, 8-OHdG, and ROS were higher than those of the individual salt stress or Mn deprivation as expected. Nevertheless, the antioxidative enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase, glutathione-S-transferase and antioxidants such as ascorbic acid, glutathione and thiol were lower than those of the individual salt stress or Mn deprivation. In view of the fact that salt stress impaired Mn nutrition of maize seedlings, the findings suggested that Mn deprivation at the cellular level may be a contributory factor to salt-induced oxidative stress and related oxidative damage of maize roots.

Restricted access

Male sterile mutants play an important role in the utilisation of crop heterosis. Male sterile plants were found in S5 generations of maize hybrid ZH2, through continuous sib-mating by using the fertile plants in the same population, we obtained a male sterile sibling population K932MS including sterile plants K932S and a fertile plant K932F. The objective of this study was to clarify the genetic characterisation and abortion characteristics by nucleus and cytoplasm effect analyses, cytoplasm grouping, and cytological observation. The results showed that no difference was found between K932S and K932F in the vegetative growth stage, but K932S had no emerging anther or pollen grains. The segregation ratio of fertile plants to sterile plants was 1:1 in the sibling progenies, while it was 3:1 in self-crossing progenies of K932F. The sterility of K932S could be restored among reciprocal progenies when seven normal inbred lines were used as females respectively. The fertility expression of K932S crossed with 30 testers would be changed in different test-crosses and some backcross progenies. The C-type restorer Zifeng-1 (Rf4Rf4) was able to restore the fertility of K932S, and the specific PCR amplification bands of K932MS were consistent with CMSCMo17. The anther of K932S began abortion at dyad with its tapetum expanded radically and vacuolated: this induced abnormality in the shapes of both dyads and tetrads. The microspore could not develop normally, and then it collapsed and gradually disappeared. Hence, K932MS is a C-type cytoplasmic male sterile mutant with a pollen-free, stable inheritance: it has potential application value for further research.

Restricted access

Summary

Harmaline and harmine accounted for more than 70% in composition in extracts of P. harmala. More attention, however, should be paid to the other alkaloids which would be favorable or unfavorable to the efficacy and safety of the products. It was necessary to determine these trace alkaloids in the extracts; thereafter, most of them have been characterized. Diglycoside vasicine, vasicine, vasicinone, harmalol, harmol, tetrahydroharmine, 8-hydroxy-harmine, ruine, harmaline, and harmine were separated and identified with reference substances and characteristic MS spectra in extracts by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and high-performance liquid chromatography (HPLC). Three trace alkaloids, vasicine, harmalol, and harmol were determined using the developed chromatographic separation method subsequently. The average contents of vasicine, harmalol, and harmol in extracts of ten batches were 2.53 ± 0.73, 0.54 ± 0.19, and 0.077 ± 0.03%, respectively. The total content of the three alkaloids was 3.23 ± 0.90% (from 1.81 to 4.48%). For rough estimation of all the relative alkaloids except of harmaline and harmine, the average total areas of all peaks in extracts varied from 4.35 to 26.64% detected at 220, 254, 265, 280, and 380 nm, respectively. The results indicated that area normalization method was powerless for the quality evaluation for traditional herb medicine consisting of numerous compounds with highly differential features. It might be concluded that LC-MS or HPLC could be utilized as a qualitative and quantitative analytical method for quality control of the extracts from seeds of P. harmala L.

Open access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
R. C. Moore
,
M. Gasser
,
N. Awwad
,
K. C. Holt
,
F. M. Salas
,
A. Hasan
,
M. A. Hasan
,
H. Zhao
, and
C. A. Sanchez

Summary  

The MARC-VI conference served as an excellent setting for a session organized to present and discuss the problems in nuclear science manpower and education. A panel discussion and contributed papers reflected the world-wide situation. This paper presents the major points of the panel discussion. As a result, a resolution on the current situation of nuclear chemistry and radiochemistry was drafted and endorsed by the conference attendees.

Restricted access

Starch is a product of photosynthetic activities in leaves. Wheat yields largely depend on photosynthetic carbon fixation and carbohydrate metabolism in flag leaves. The mapping of quantitative trait loci (QTLs) associated with flag leaf starch content (FLSC) in wheat (Triticum aestivum L.) was completed using unconditional and conditional QTL analyses. The FLSC of this population during the early grain-filling stage was measured at six stages in six environments. Combining unconditional and conditional QTL mapping methods, eight unconditional QTLs and nine conditional QTLs were detected, with five QTLs identified as unconditional and conditional QTLs. Four unconditional QTLs (i.e. qFLS-1B, qFLS-1D-1, qFLS-4A, and qFLS-7D-1) and one conditional QTL (i.e. qFLS-3A-1) were identified in two of six environments. Two QTLs (qFLS-1D-2 and qFLS-7D-1), which significantly affected the FLSC, were identified using the unconditional QTL mapping method, while three QTLs (i.e. qFLS-1A, qFLS-3A-1, and qFLS-7D-1) were detected using the conditional QTL mapping method. Our findings provide new insights into the genetic mechanism and regulatory network underlying the diurnal FLSC in wheat.

Restricted access

To comprehensively understand the genetic basis of plant height (PH), quantitative trait locus (QTL) analysis for internode lengths, internode component indices and plant height component index (PHCI) were firstly conducted in the present study. Two related F8:9 recombinant inbred line (RIL) populations comprising 485 and 229 lines were used. Two hundred and nine putative additive QTL for the eight traits were identified, 35 of which showed significance in at least three trials. Of these, at least 11 pairwise QTL were common to the two populations. PH components at the QTL level had different effects on PH, confirming our previous multivariate conditional analysis (Cui et al. 2011). Eleven major QTL that showed consistency in expression across environments should be of great value in the genetic improvement of PH in wheat. The results above will enhance the understanding of the genetic basis of PH in wheat.

Restricted access

Grain yield (GY) and yield components (YC) were investigated using two F8: 9 RILs, comprising 229 and 485 lines, respectively. A conditional analysis was conducted to generate conditional values for GY independent of each YC. Then both unconditional and conditional values were analyzed to map QTLs with additive effect. In both RILs, up to 23 unconditional and conditional QTLs were detected. However, only two QTLs were identified repeatedly among environments. All QTLs, except for 4 detected in unconditional mapping, were also identified as conditional QTLs, whereas a number of QTLs were additionally detected in conditional mapping. The number of QTLs detected that affected GY was different with respect to component-special influences. Our results revealed that the contributions of YC influencing QTL expression related to GY differed.

Restricted access

A recombinant inbred line (RIL) population with 302 lines derived from a cross of Weimai 8 × Luohan 2 was used to identify the quantitative trait loci (QTL) for plant height (PH) in wheat (Triticum aestivum L.). Possible genetic relationships between PH and PH components (PHC), including spike length (SL) and internode length from the first to the fourth node counted from the top, abbreviated as FIITL, SITL, TITL and FOITL, respectively, were evaluated at the QTL level. A QTL for PH was mapped using data on PH and on PH conditioned by PHC using the IciMapping V3.0 software. Conditional QTL mapping proved that, at the QTL level, SL contributed the least to PH, followed by FIITL and FOITL, while TITL had the strongest influence on PH, followed by SITL. These results indicate that the conditional QTL mapping method can be used to evaluate possible genetic relationships between PH and PHC, and that it can efficiently and precisely reveal counteracting QTL, which will enhance our understanding of the genetic basis of PH in wheat.

Restricted access