Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: CM Mermier x
Clear All Modify Search
Restricted access

This study compared the ventilation response to an incremental ergometer exercise at two altitudes: 633 mmHg (resident altitude = 1,600 m) and following acute decompression to 455 mmHg (≈4,350 m altitude) in eight male cyclists and runners. At 455 mmHg, the VESTPD at RER <1.0 was significantly lower and the VEBTPS was higher because of higher breathing frequency; at VO2max, both VESTPD and VEBTPS were not significantly different. As percent of VO2max, the VEBTPS was nearly identical and VESTPD was 30% lower throughout the exercise at 455 mmHg. The lower VESTPD at lower pressure differs from two classical studies of acclimatized subjects (Silver Hut and OEII), where VESTPD at submaximal workloads was maintained or increased above that at sea level. The lower VESTPD at 455 mmHg in unacclimatized subjects at submaximal workloads results from acute respiratory alkalosis due to the initial fall in HbO2 (≈0.17 pHa units), reduction in PACO2 (≈5 mmHg) and higher PAO2 throughout the exercise, which are partially pre-established during acclimatization. Regression equations from these studies predict VESTPD from VO2 and P B in unacclimatized and acclimatized subjects. The attainment of ventilatory acclimatization to altitude can be estimated from the measured vs. predicted difference in VESTPD at low workloads after arrival at altitude.

Restricted access
Authors: JJ McCormick, TA VanDusseldorp, CG Ulrich, RL Lanphere, K Dokladny, PL Mosely and CM Mermier

Autophagy is a lysosome degradation pathway through which damaged organelles and macromolecules are degraded within the cell. A decrease in activity of the autophagic process has been linked to several age-associated pathologies, including triglyceride accumulation, mitochondrial dysfunction, muscle degeneration, and cardiac malfunction. Here, we examined the differences in the autophagic response using autophagy-inducer rapamycin (Rapa) in peripheral blood mononuclear cells (PBMCs) from young (21.8 ± 1.9 years) and old (64.0 ± 3.7 years) individuals. Furthermore, we tested the interplay between the heat shock response and autophagy systems. Our results showed a significant increase in LC3-II protein expression in response to Rapa treatment in young but not in old individuals. This was associated with a decreased response in MAP1LC3B mRNA levels, but not SQSTM1/p62. Furthermore, HSPA1A mRNA was upregulated only in young individuals, despite no differences in HSP70 protein expression. The combined findings suggest a suppressed autophagic response following Rapa treatment in older individuals.

Restricted access