Search Results

You are looking at 1 - 10 of 24 items for

  • Author or Editor: Chi-Min Shu x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Tert-butyl peroxide (TBPO), is a typical organic peroxides (OPs), which is widely applied as initiator in poly-glycidyl methacrylate (PGMA) reaction, and is employed to provide a free-radical in frontal polymerization, and which has also caused many thermal runaway reactions and explosions worldwide. To find an unknown and insufficient hazard information for an energetic material, differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2) were employed to detect the fundamental thermokinetic parameters involving the exothermic onset temperature (T 0), heat of decomposition (ΔH d), temperature rise rate (dT · dt −1), time to maximum rate under adiabatic situation (TMRad), pressure rise rate (dP · dt −1), and maximum pressure (P max), etc. The T 0 was calculated to be 130 °C using DSC and VSP2. Activation energy (E a) of TBPO was evaluated to be 136 kJ mol−1 by VSP2. In view of the loss prevention, calorimetric applications and model evaluation to integrate thermal hazard development are adequate means for inherently safer design.

Restricted access

Abstract

The thermokinetic parameters were investigated for cumene hydroperoxide (CHP), di-tert-butyl peroxide (DTBP), and tert-butyl peroxybenzoate (TBPB) by non-isothermal kinetic model and isothermal kinetic model by differential scanning calorimetry (DSC) and thermal activity monitor III (TAM III), respectively. The objective was to investigate the activation energy (E a) of CHP, DTBP, and TBPB applied non-isothermal well-known kinetic equation to evaluate the thermokinetic parameters by DSC. We employed TAM III to assess the thermokinetic parameters of three liquid organic peroxides, obtained thermal runaway data, and then used the Arrhenius plot to obtain the E a of liquid organic peroxides at various isothermal temperatures. In contrast, the results of non-isothermal kinetic algorithm and isothermal kinetic algorithm were acquired from a highly accurate procedure for receiving information on thermal decomposition characteristics and reaction hazard.

Restricted access

Abstract  

A hierarchical set of kinetic models were proposed and discussed for simulation of autocatalytic decomposition of cumene hydroperoxide (CHP) in cumene at low temperatures. The hierarchy leads from a formal model of full autocatalysis, which is based on conversion degree as a state variable, through a two-stage autocatalytic concentration-based model to a meticulous multi-stage model of the reaction. By the ForK (Formal Kinetics) and DesK (Descriptive Kinetics) software, developed by ChemInform Saint Petersburg (CISP) Ltd., the related kinetic parameters and their significance have also been estimated and elucidated. Through this best-fit approach, it is possible to formulate a systematic methodology on the kinetic studies for thermal decomposition of typical organic peroxides with autocatalytic nature, specifically at low temperature ranges.

Restricted access

Abstract  

Lauroyl peroxide (LPO) is a typical organic peroxide that has caused many thermal runaway reactions and explosions. Differential scanning calorimetry (DSC) was employed to determine the fundamental thermokinetic parameters that involved exothermic onset temperature (T0), heat of decomposition (ΔHd), and other safety parameters for loss prevention of runaway reactions and thermal explosions. Frequency factor (A) and activation energy (Ea) were calculated by Kissinger model, Ozawa equation, and thermal safety software (TSS) series via DSC experimental data. Liquid thermal explosion (LTE) by TSS was employed to simulate the thermal explosion development for various types of storage tank. In view of loss prevention, calorimetric application and model analysis to integrate thermal hazard development were necessary and useful for inherently safer design.

Restricted access

Abstract  

Dicumyl peroxide (DCPO) is usually employed as an initiator for polymerization, a source of free radicals, a hardener, and a linking agent. In Asia, due to its unstable reactive nature, DCPO has caused many thermal explosions and runaway reaction incidents in the manufacturing process. This study was conducted to elucidate its essentially thermal hazard characteristics. In order to analyze the runaway behavior of DCPO in a batch reactor, thermokinetic parameters, such as heat of decomposition (ΔH d) and exothermic onset temperature (T 0), were measured via differential scanning calorimetry (DSC). Thermal runaway phenomena were then thoroughly investigated by DSC. The thermokinetics of DCPO mixed with acids or bases were determined by DSC, and the experimental data were compared with kinetics-based curve fitting of thermal safety software (TSS). Solid thermal explosion (STE) and liquid thermal explosion (LTE) simulations of TSS were applied to determine the fundamental thermal explosion behavior in large tanks or drums. Results from curve fitting indicated that all of the acids or bases could induce exothermic reactions at even an earlier stage of the experiments. In order to diminish the extent of hazard, hazard information must be provided to the manufacturing process. Thermal hazard of DCPO mixed with nitric acid (HNO3) was more dangerous than with other acids including sulfuric acid (H2SO4), phosphoric acid (H3PO4), and hydrochloric acid (HCl). By DSC, T 0, heat of decomposition (ΔH d), and activation energy (E a) of DCPO mixed with HNO3 were calculated to be 70 °C, 911 J g−1, and 33 kJ mol−1, respectively.

Restricted access

Abstract

When above certain temperature limits, lauroyl peroxide is an unstable material. If the thermal source cannot be properly governed during any stage in the preparation, manufacturing process, storage or transport, runaway reactions may inevitably be induced immediately. In this study, the influence of runaway reactions on its basic thermal characteristic was assessed by evaluating thermokinetic parameters, such as activation energy (E a) and frequency factor (A) by thermal activity monitor III (TAM III). This was achieved under five isothermal conditions of 50, 60, 70, 80, and 90 °C. Vent sizing package 2 (VSP2) was employed to determine the maximum pressure (P max), maximum temperature (T max ), maximum self-heating rate ((dT dt −1)max), maximum pressure rise rate ((dP dt −1)max), and isothermal time to maximum rate ((TMR)iso) under the worst case. Results of this study will be provided to relevant plants for adopting best practices in emergency response or accident control.

Restricted access

Abstract

With two active O–O peroxide groups, 1,1-bis(tert-butylperoxy)cyclohexane (BTBPC) has a certain degree of thermal instability. It is usually used as an initiator in chemical processes, and therefore reckless operation may result in serious thermal accidents. This study focused on the runaway reactions of BTBPC alone and mixed with various concentrations of nitric acid (1, 2, 4, and 8 N). The essential thermokinetic parameters, such as exothermic onset temperature (T o), activation energy (E a), frequency factor (A), time to maximum rate under adiabatic condition (TMRad) and time to conversion limit (TCL), were evaluated by differential scanning calorimetry at the heating rate of 4 °C min−1, and a kinetics-based curve fitting method was used to assess the thermokinetic parameters. All the results indicated that BTBPC mixed with one more than 4 N nitric acid dramatically increased the degree of thermal hazard in the exothermic peak and became more dangerous. However, it was relatively safe for BTBPC mixed with less than 1 N nitric acid under 34.5 °C.

Restricted access

Abstract

In view of availability, accountability, and applicability, LiFePO4 cathode material has been confirmed to be better than LiCoO2 cathode material. Nevertheless, few related researches were conducted for thermal runaway reaction of the LiFePO4 batteries. In this study, vent sizing package 2 (VSP2) and differential scanning calorimetry were employed to observe the thermal hazard of 18650 lithium-ion batteries and their content—LiFePO4 cathode material, which were manufactured by Commercial Battery, Inc. Two states of the batteries were investigated, which was charged to 3.6 V (fully charged) and 4.2 V (overcharged), respectively, and important parameters were obtained, such as self-heating rate (dT dt −1), pressure-rise rate (dP dt −1), and exothermic onset temperature (T 0). The results showed that T 0 for fully charged is about 199.94 °C and T max is about 243.23 °C. The entire battery for LiFePO4 cathode material is more stable than other lithium-ion batteries, and an entire battery is more dangerous than a single cathode material. For process loss prevention, the data of battery of VSP2 test were applied as reference for design of safer devices.

Restricted access

Abstract

The decomposition of organic peroxides by their relatively weak oxygen linkage and hydroperoxide radical in the presence of reaction solution is one of the thermal hazards for triggering a runaway reaction. Runaway incidents may occur in oxidation reactors, vacuum condensation reactors, tank lorries, or storage tanks. In NFPA 432 organic peroxides in NFPA 432 are classified as flammable. The exothermic behaviors of solid organic peroxides, dicumene peroxide, benzoyl peroxide, and lauroyl peroxide, were determined by differential scanning calorimetry (DSC), and vent sizing package 2 (VSP2). Relevant data detected by DSC provided thermal stability information, such as exothermic onset temperature (T 0), maximum heat-releasing peak (T max), and heat of decomposition (ΔH d). VSP2 was used to perform the bench scale situation for pushing the expected or unexpected reaction to undergo runaway reaction. Onset temperature, maximum pressure, self-heating rate ((dT dt −1)max), and pressure-release rate ((dP dt −1)max) were therefore obtained and explained. These results are essentially crucial in process design for an inherently safer approach.

Restricted access

Abstract

Methyl ethyl ketone peroxide (MEKPO) is generally applied to manufacturing in the polymerization processes. Due to thermal instability and high exothermic behaviors of MEKPO, if any operation is undertaken recklessly or some environmental effect is produced suddenly during the processes, fires and explosions may inevitably occur. In this study, thermal analysis was evaluated for MEKPO by differential scanning calorimetry (DSC) test. Vent sizing package 2 (VSP2) was used to analyze the thermal hazard of MEKPO under various stirring rates in a batch reactor. Thermokinetic and safety parameters, including exothermic onset temperature (T 0), maximum temperature (T max), maximum pressure (P max), self-heating rate (dT dt −1), pressure rise rate (dP dt −1), and so on, were discovered to identify the safe handling situation. The stirring rates of reactor were confirmed to affect runaway and thermal hazard characteristics in the batch reactor. If the stirring rate was out of control, it could soon cause a thermal hazard in the reactor.

Restricted access