Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: D. Chichester x
  • All content x
Clear All Modify Search

Abstract  

Highly enriched concentrations of several heavy metals have been found in municipal solid waste incinerator (MSWI) ash. In an effort to identify possible sources of these metals in MSWI ash, a variety of disposable household plastic products was examined for heavy metal content. Using both thermal and epithermal neutron activation analysis (NAA) along with Compton suppression techniques, concentrations of several trace and heavy metals including Ag, As, Au, Ba, Br, Cd, Cr, Cu, Fe, Mn, Ni, Sb, Se, Sn, Sr, V, W and Zn were determined. Results indicate a wide range of concentrations for these elements, with large variations in plastics of similar color and intended use. As limits dealing with heavy metal content of consumer products are lowered, NAA techniques will provide a useful method for verification of product compliance.

Restricted access

Abstract  

Due to a need for security screening instruments capable of detecting explosives and nuclear materials there is growing interest in neutron generator systems suitable for field use for applications broadly referred to as active neutron interrogation (ANI). Over the past two years Thermo Electron Corporation has developed a suite of different compact accelerator neutron generator products specifically designed for ANI field work to meet this demand. These systems incorporate hermetically-sealed particle accelerator tubes designed to produce fast neutrons using either the deuterium-deuterium (E n = 2.5 MeV) or deuterium-tritium (E n = 14.1 MeV) fusion reactions. Employing next-generation features including advanced sealed-tube accelerator designs, all-digital control electronics and innovative housing configurations these systems are suitable for many different uses. A compact system weighing less than 14 kg (MP 320) with a lifetime exceeding 1000 hours has been developed for portable applications. A system for fixed installations (P 325) has been developed with an operating life exceeding 4500 hours that incorporates specific serviceability features for permanent facilities with difficult-to-access shield blocks. For associated particle imaging (API) investigations a second-generation system (API 120) with an operating life of greater than 1000 hours has been developed for field use in which a high resolution fiber-optic imaging plate is specially configured to take advantage of a neutron point-source spot size of ∼2 mm.

Restricted access