Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: D. Fu x
Clear All Modify Search
Authors: D. Huang, H. Zhang, M. Tar, Y. Zhang, F. Ni, J. Ren, D. Fu, L. Purnhauser and J. Wu

Stripe or yellow rust (Yr), caused by Puccinia striiformis Westend. (Pst), is one of the most important wheat diseases worldwide. New aggressive Pst races can spread quickly, even between countries and continents. To identify and exploit stripe rust resistance genes, breeders must characterize first the Pst resistance and genotypes of their cultivars. To find new sources of resistances it is important to study how wheat varieties respond to Pst races that predominate in other continents. In this study we evaluated stripe rust resistance in 53 Hungarian winter wheat cultivars in China. Twenty-four cultivars (45.3%) had all stage resistance (ASR) and 1 (1.9%) had adult-plant resistance (APR), based on seedling tests in growth chambers and adult-plant tests in fields. We molecularly genotyped six Yr resistance genes: Yr5, Yr10, Yr15, Yr17, Yr18, and Yr36. Yr18, an APR gene, was present alone in five cultivars, and in ‘GK Kapos’, that also had seedling resistance. The other five Yr genes were absent in all cultivars tested.

Restricted access
Authors: G. Chen, M.H. Zhang, X.J. Liu, J.Y. Fu, H.Y. Li, M. Hao, S.Z. Ning, Z.W. Yuan, Z.H. Yan, B.H. Wu, D.C. Liu and L.Q. Zhang

Premature termination codons (PTCs) are an important reason for the silence of highmolecular- weight glutenin subunits in Triticum species. Although the Glu-A1y gene is generally silent in common wheat, we here isolated an expressed Glu-A1y gene containing a PTC, named 1Ay8.3, from Triticum monococcum ssp. monococcum (AmAm, 2n = 2x = 14). Despite the presence of a PTC (TAG) at base pair positions 1879–1881 in the C-terminal coding region, this did not obviously affect 1Ay8.3 expression in seeds. This was demonstrated by the fact that when the PTC TAG of 1Ay8.3 was mutated to the CAG codon, the mutant in Escherichia coli bacterial cells expressed the same subunit as in the seeds. However, in E. coli, 1Ay8.3 containing the PTC expressed a truncated protein with faster electrophoretic mobility than that in seeds, suggesting that PTC translation termination suppression probably occurs in vivo (seeds) but not in vitro (E. coli). This may represent one of only a few reports on the PTC termination suppression phenomenon in genes.

Restricted access