Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: D. Glasgow x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Delayed neutron activation analysis (DNAA) presents a fast, accurate, and reliable method for quantification of fissile material. The method has relatively few sources of error and may be accomplished nondestructively. The need for a fast, accurate screening of materials stems from the necessity to protect cleanroom facilities from widely varying fissile quantities in samples and from desired gains in efficiency of mass spectrometric analysis by assisting in spike level selection and by removing from the sample set those materials that are not of interest. During the last several years, many different materials have been screened or analyzed in support of international safeguards, internal process control for actinide separations, and in uranium contamination assessments. Swipes from a variety of sources have been analyzed, either before or after dissolution, and comparison of the DNAA results to mass spectrometry results is generally favorable. A facility characterization of the High Flux Isotope Reactor was performed using filter paper swipes to demonstrate the utility of the DNAA technique.

Restricted access

Abstract  

Neutron activation analysis utilizing the High Flux Isotope Reactor (HFIR) immediately following SCRAM is a workable solution to obtaining data for ultra-short lived species, principally Al, Ti, Mg, and V. Neutrons are produced in the HFIR core within the beryllium reflector due to gamma-ray bombardment from the spent fuel element. This neutron flux is not constant, varying by over two orders of magnitude during the first 24 hours. The problems associated with irradiation in a changing neutron flux are removed through the use of a specially tailored activation equation. This activation equation is applicable to any irradiation at HFIR in the first 24 hours after SCRAM since the fuel elements are identical from cycle to cycle, and the gamma-emitting nuclides responsible for the neutrons reach saturation during the fuel cycle. Reference material tests demonstrate that this method is successful, and detection limit estimates reveal that it should be applicable to materials of widely ranging mass and composition.

Restricted access

Abstract  

One of the more difficult problems associated with comparative neutron activation analysis (CNAA) is the preparation of standards which are tailor-made to the desired irradiation and counting conditions. Frequently, there simply is not a suitable standard available commercially, or the resulting gamma spectrum is convoluted with interferences. In a recent soil analysis project, the need arose for standards which contained about 35 elements. In response, a computer spreadsheet was developed to calculate the appropriate amount of each element so that the resulting gamma spectrum is relatively free of interferences. Incorporated in the program are options for calculating all of the irradiation and counting parameters including activity produced, necessary flux/bombardment time, counting time, and appropriate source-to-detector distance. The result is multi-element standards for CNAA which have optimal concentrations. The program retains ease of use without sacrificing capability. In addition to optimized standard production, a novel soil homogenization technique was developed which is a low cost, highly efficient alternative to commercially available homogenization systems. Comparative neutron activation analysis for large scale projects has been made easier through these advancements. This paper contains details of the design and function of the NAA spreadsheet and innovative sample handling techniques.

Restricted access

Abstract  

A preliminary test of a liquid mercury target for the production of neutrons by spallation was undertaken at the Alternating Gradient Synchrotron facility at Brookhaven National Laboratory. Neutron activation of elemental foils placed on the target demonstrates that a range of neutron energies does exist, as expected, and that the neutron flux is at a maximum 10–20 cm from the front of the target, moving deeper with increasing proton energy. Uncertainties in the activity calculations are in general significantly <10%. Impurities in some of the foils are a significant source of interference for some reactions, although there is no interference for most of the reactions. The presence of many interference-free reactions, along with the low uncertainties indicates that the foils will be useful benchmarks to validate the neutronics codes utilized in the target design.

Restricted access