Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: D. Noronha x
- Refine by Access: All Content x
Abstract
A new sorbent, thorium oxalate incorporated in silica gel matrix was prepared. This material was characterized by X-ray, Thermo-gravimetric Analysis, surface area and porosity analysis. The material was obtained in the form of granular particles in the mesh size range of 80–150 American Standard of Testing Materials, yielding good liquid flow, when packed in ion exchange column. This sorbent was investigated for the sorption of americium from various aqueous media such as nitric acid, oxalic acid and sulphuric acid by distribution coefficient studies. Column experiments were carried out to study the practical application of this sorbent for removal of americium from oxalic acid-nitric acid solutions. Elution studies were also carried out for the recovery of americium.
Abstract
The extraction of Am(III) from nitric, hydrochloric, oxalic, phosphoric and hydrofluoric acids was studied using 0.4F di-2-ethyl hexyl phosphoric acid (HDEHP) containing 0.1M phosphorous pentoxide (P2O5) in dodecane/xylene. The extraction with pure 0.4F HDEHP was found to be negligible from all the media studied. However, the presence of a small amount of P2O5 in it increased the extraction substantially. The distribution ratios of Am(III) obtained for HDEHP - P2O5 mixture 3M nitric acid containing different concentrations of oxalic acid/phosphoric acid/hydrofluoric acid are in the order of 200-250. The same for 3M hydrochloric acid is very high (800). These distribution ratios are sufficiently high for the quantitative extraction of Am(III) from all the acid media studied. Different reagents such as ammonium oxalate, sodium oxalate, oxalic acid, hydrofluoric acid, sodium carbonate and potassium sulphate were explored for the back extraction of Am(III) from 0.4F HDEHP + 0.1M P2O5 in dodecane/xylene. Of these, 0.35M ammonium oxalate and 1M sodium carbonate were found to be most suitable. The back extraction of Am(III) was also attempted with water and 1M H2SO4, HNO3, HClO4 and HCl solutions after allowing the extracted organics to degrade on its own. It was found that more than 90% of Am could be back extracted with these acids. Using this method more than 90% of Am(III) was recovered from nitric acid solutions containing calcium and fluoride ions.
Abstract
Sorption of Pu(IV) from hydrochloric acid-oxalic acid solutions has been investigated using different anion exchangers, viz., Dowex-1X4, Amberlite XE-270 (MP) and Amberlyst A-26 (MP) for the recovery of plutonium from plutonium oxalate solutions. Distribution ratios of Pu(IV) for its sorption on these anion exchangers have been determined. The sorption of Pu(IV) from hydrochloric acid solutions decreases drastically in the presence of oxalic acid. However, addition of aluminium chloride enhances the sorption of plutonium in the presence of oxalic acid, indicating the feasibility of recovery of plutonium. Pu(IV) breakthrough capacities have been determined with a 10 ml resin bed of each of these anion exchangers at a flow rate of 60 ml per hour using a solution of Pu(IV) with the composition: 6M HCl+0.05M HNO3+0.1M H2C2O4+0.5M AlCl3+100 mg.l–1 Pu(IV). The 10% Pu(IV) breakthrough capacities for Dowex-1X4, Amberlite XE-270 (MP) and Amberlyst A-26 (MP) are 15.0, 8.9 and 6.2 g of Pu(IV) l–1 of resin respectively.