Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: D. Sims x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Soil samples were collected at the site of a 1951 leak from an underground storage tank of 6.7 liter of an aqueous solution of irradiated uranium. Laboratory simulations were conducted using irradiated and non-irradiated natural uranium metal, dissolved in acidic aqueous solutions and added to soil columns. Contaminant transport experiments were conducted for a period of 12 to 14 months, followed by sample analysis employing gamma-spectroscopy, neutron activation analysis and liquid scintillation counting. The concentration distributions of U, Cs and Sr found from the experiments were used to derive diffusion coefficients. The measured diffusion coefficients from the field samples were: for 137Cs, 3.0E-04 cm2·s−1; for 238U, 1.8E-09 cm2·s−1; and for 90Sr, 2.6E-09 cm2·s−1. Corresponding values for the laboratory simulations were 5E-06, 3E-05 and 1.9E-05 cm2·s−1, respectively.

Restricted access

Abstract  

A computer program entitled SCAAP (Set-up, Calibration, Acquisition and Analysis Program) has been designed to make gamma-ray spectroscopy easily useable by staff in laboratories at the Slowpoke-2 Facility at RMC and in support of the Canadian Forces Nuclear Emergency Response Teams (NERTs). The former group utilises gamma-ray spectroscopy for neutron activation analysis (NAA), while the latter may need to have inhalation dose rates calculated. The intent of this program, written using Microsoft Visual Basic, is to provide a simplified interface between the operator and the spectroscopy equipment and to provide the calculations necessary to produce results quickly. There are five sections (Setup, Calibrate, Acquire, Analyse and NAA) of which the first four are linked. In these sections, a checklist of procedures is presented and automated for the user to set up and calibrate the equipment and then to analyse spectra to provide various dose rates. In the unlinked section, NAA, gamma-ray spectra are analysed to provide elemental concentrations in samples.

Restricted access

Abstract  

In 1951, unsaturated prairie soil was contaminated with fission products and actinides. Fifty years later, in 2001, soil samples were collected from the contaminated site. This paper describes the techniques used to analyze these samples, including gamma-spectroscopy (GS) for 137Cs, neutron activation analysis (NAA/GS) for 238U, liquid scintillation counting (LSC) for 90Sr and inductively coupled plasma mass spectroscopy (ICP-MS) for 238U and 113mCd. As expected, ICP-MS was found to have the lowest detection level, while the techniques were ranked in order of increasing uncertainty as GS, NAA/GS, ICP-MS and LSC.

Restricted access

Summary  

In 1951, 6.7 liters of an aqueous acidic solution of irradiated uranium (360 GBq) leaked from a buried storage tank into unsaturated prairie soil, where it has remained, undisturbed. In October 2001, sonic drilling was conducted to recover core samples around and below the tank location. This paper describes the measurements and investigative approaches being pursued to determine the transport properties of the various fission and daughter products and actinides. Separate effects laboratory experiments are also being conducted involving both inert and radioactive samples in similar soil, to examine the effects on transport properties (diffusion and sorption) of temperature, recharge and discharge rates, concentration and soil porosity. Finally, transport modeling approaches are discussed.

Restricted access
Studia Scientiarum Mathematicarum Hungarica
Authors:
Jing Quan Chong
,
Xing Chen Huang
,
Tuo Yeong Lee
,
Jing Tao Li
,
Hui Xiang Sim
,
Jing Ren Soh
,
Gabriel Jiaxu Tan
, and
Jay Kin Heng Tai

We prove that

k = 1 n sin  k θ k π θ π o π sin t t d t + 1 2 sin θ + 1 2 1 π 0 π sin t t d t 1 2 sin 2 θ

for all integers n ≥ 1 and ɵ ≤ 8 ≤ π. This result refines inequalities due to Jackson (1911) and Turán (1938).

Restricted access