Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: D.T. Liu x
  • All content x
Clear All Modify Search


Rapid high-performance liquid chromatographic methods with evaporative light scattering detection (HPLC-ELSD) and electrospray ionization multistage mass spectrometry (HPLC-ESI-MSn) have been established and validated for simultaneous qualitative and quantitative analysis of eight steroidal saponins in ten batches of Gongxuening capsule (GXN), a widely commercially available traditional Chinese preparation. The optimum chromatographic conditions entailed use of a Kromasil C18 column with acetonitrile-water (30:70 to 62:38, υ/υ) as mobile phase at a flow rate of 1.0 mL min−1. The drift tube temperature of the ELSD was 102°C and the nebulizing gas flow rate was 2.8 L min−1. Separation was successfully achieved within 25 min. LC-ESI-MSn was used for unequivocal identification of the constituents of the samples by comparison with reference compounds. The assay was fully validated for precision, repeatability, accuracy, and stability, then successfully applied to quantification of the eight compounds in samples. The method could be effective for evaluation of the clinical safety and efficacy of GXN.

Restricted access

In this study, the cDNA of homocysteine S-methyltransferase was isolated from Aegilops tauschii Coss., with the gene accordingly designated as AetHMT1. Similar to other methyltransferases, AetHMT1 contains a GGCCR consensus sequence for a possible zinc-binding motif near the C-terminal and a conserved cysteine residue upstream of the zinc-binding motif. Analysis of AetHMT1 uncovered no obvious chloroplast or mitochondrial targeting sequences. We functionally expressed AetHMT1 in Escherichia coli and confirmed its biological activity, as evidenced by a positive HMT enzyme activity of 164.516 ± 17.378 nmol min−1 mg−1 protein when catalyzing the transformation of L-homocysteine. Compared with the bacterium containing the empty vector, E. coli harboring the recombinant AetHMT1 plasmid showed much higher tolerance to selenate and selenite. AetHMT1 transcript amounts in different organs were increased by Na2SeO4 treatment, with roots accumulating higher amounts than stems, old leaves and new leaves. We have therefore successfully isolated HMT1 from Ae. tauschii and characterized the biochemical and physiological functions of the corresponding protein.

Restricted access

As one of the world’s earliest domesticated crops, barley is a model species for the study of evolution and domestication. Domestication is an evolutionary process whereby a population adapts, through selection; to new environments created by human cultivation. We describe the genome-scanning of molecular diversity to assess the evolution of barley in the Tibetan Plateau. We used 667 Diversity Arrays Technology (DArT) markers to genotype 185 barley landraces and wild barley accessions from the Tibetan Plateau. Genetic diversity in wild barley was greater than in landraces at both genome and chromosome levels, except for chromosome 3H. Landraces and wild barley accessions were clearly differentiated genetically, but a limited degree of introgression was still evident. Significant differences in diversity between barley subspecies at the chromosome level were observed for genes known to be related to physiological and phenotypical traits, disease resistance, abiotic stress tolerance, malting quality and agronomic traits. Selection on the genome of six-rowed naked barley has shown clear multiple targets related to both its specific end-use and the extreme environment in Tibet. Our data provide a platform to identify the genes and genetic mechanisms that underlie phenotypic changes, and provide lists of candidate domestication genes for modified breeding strategies.

Restricted access
Cereal Research Communications
Authors: Y.P. Jing, D.T. Liu, X.R. Yu, F. Xiong, D.L. Li, Y.K. Zheng, Y.F. Hao, Y.J. Gu, and Z. Wang

The objective of the present study was to understand the developmental regularity of wheat endosperm cells at different Days After Pollination (DAP) using microscopic and histochemical methods. Resin semi-thin sections of the endosperm and the enzymatically dissociated Starchy Endosperm Cells (SECs) were observed under a light microscope. The results showed that: (1) SECs were irregular-shaped and had two types of starch granules: large oval-shaped A-type starch granules and small spherical B-type starch granules. (2) The growth shape of SECs was referred to as S-curve and the fastest cell growth period was at 16–24 DAP. (3) The largest increase and growth of A-type starch granules were mainly at 4–16 DAP. B-type starch granules increased rapidly after 16 DAP and made up over 90% of the total starch granules in SEC during the late stage of endosperm development. (4) The nuclei of SEC deformed and degenerated during the middle and late stages of endosperm development and eventually disappeared. However, starch granules still increased and grew after the cell nuclei had degenerated. The investigations showed the development regularity of starch endosperm cells and starch granules, thereby improving the understanding of wheat endosperm development.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: K. Inn, Zhichao Lin, Zhongyu Wu, C. McMahon, J. Filliben, P. Krey, M. Feiner, Chung-King Liu, R. Holloway, J. Harvey, I. Larsen, T. Beasley, C. Huh, S. Morton, D. McCurdy, P. Germain, J. Handl, M. Yamamoto, B. Warren, T. Bates, A. Holms, B. Harvey, D. Popplewell, M. Woods, S. Jerome, K. Odell, P. Young, and I. Croudace


In 1977, the Low-level Working Group of the International Committee on Radionuclide Metrology met in Boston, MA (USA) to define the characteristics of a new set of environmental radioactivity reference materials. These reference materials were to provide the radiochemist with the same analytical challenges faced when assaying environmental samples. It was decided that radionuclide bearing natural materials should be collected from sites where there had been sufficient time for natural processes to redistribute the various chemically different species of the radionuclides. Over the succeeding years, the National Institute of Standards and Technology (NIST), in cooperation with other highly experienced laboratories, certified and issued a number of these as low-level radioactivity Standard Reference Materials (SRMs) for fission and activation product and actinide concentrations. The experience of certifying these SRMs has given NIST the opportunity to compare radioanalytical methods and learn of their limitations. NIST convened an international workshop in 1994 to define the natural-matrix radionuclide SRM needs for ocean studies. The highest priorities proposed at the workshop were for sediment, shellfish, seaweed, fish flesh and water matrix SRMs certified for mBq per sample concentrations of 90 Sr, 137 Cs and 239 Pu + 240 Pu. The most recent low-level environmental radionuclide SRM issued by NIST, Ocean Sediment (SRM 4357) has certified and uncertified values for the following 22 radionuclides: 40 K, 90 Sr, 129 I, 137 Cs, 155 Eu, 210 Pb, 210 Po, 212 Pb, 214 Bi, 226 Ra, 228 Ra, 228 Th, 230 Th, 232 Th, 234 U, 235 U, 237 Np, 238 U, 238 Pu, 239 Pu + 240 Pu, and 241 Am. The uncertainties for a number of the certified radionuclides are non-symmetrical and relatively large because of the non-normal distribution of reported values. NIST is continuing its efforts to provide the ocean studies community with additional natural matrix radionuclide SRMs. The freeze-dried shellfish flesh matrix has been prepared and recently sent to participating laboratories for analysis and we anticipate receiving radioanalytical results in 2000. The research and development work at NIST produce well characterized SRMs that provide the world's environment-studies community with an important foundation component for radionuclide metrology.

Restricted access