Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: E. Magyari x
  • All content x
Clear All Modify Search

In this paper, we elaborated a new concept (the Regularities-Deviations-Uniqueness; RDU framework) to analyse regional vegetation patterns and applied it to the Pannonian region of the Carpathian Basin. We introduced three criteria, namely: distributional regularity, distributional deviation, and compositional uniqueness. Regularities conform to the pattern expected based on macroclimate and relief. Deviations are singular phenomena and are defined as the conspicuous departures from the regular pattern at odds with either zonal pattern (climate rules), or the repetitive extrazonal patterns (relief and meso-climate interactions). Endemic plant communities of the Pannonian region (defined by a unique species composition) are regarded as the unique features. The main regularities recognised for the Pannonian region are: (1) the altitudinal pattern of vegetation belts, (2) the horizontal zonation of the Dunántúl, (3) the gradient of continentality along the mountain ranges, and (4) the circular zonality of the Nagyalföld. Deviations are mostly explained by local vegetation history, mesoclimate, and edaphic factors. The major deviations include (i) occurrence of mixed Pinus sylvestris forests in Őrség, (ii) cool continental forest-steppe forests on Kisalföld, and Gödöllői-dombvidék, (iii) the direct contact of Fagus and Quercus pubescens forests (Bakony, Balatonfelvidék), (iv) the Fraxinus excelsior-Tilia spp. forests on rock outcrops, and (v) the Sphagnum bogs on the Alföld. Individuality of the Pannonian region is demonstrated by the endemic zonal forest-steppe forests and intrazonal endemic communities such as the Cerasus mahaleb-Quercus pubescens forests, and the vegetation on calcareous sand, dolomite and saline soils and the like. We argue that the introduced criteria are suitable for the entitation and description of other biogeographical regions, and offer useful tool for interregional comparisons.

Restricted access
Acta Physiologica Hungarica
Authors: E. Lukács, B. Magyari, L. Tóth, Zs. Petrási, I. Repa, A. Koller, and Iván Horváth

There are several experimental models for the in vivo investigation of myocardial infarction (MI) in small (mouse, rat) and large animals (dog, pig, sheep and baboons). The application of large animal models raises ethical concerns, the design of experiments needs longer follow-up times, requiring proper breeding and housing conditions, therefore resulting in higher cost, than in vitro or small animal studies. On the other hand, the relevance of large animal models is very important, since they mostly resemble to human physiological and pathophysiological processes. The first main difference among MI models is the method of induction (open or closed chest, e.g. surgical or catheter based); the second main difference is the presence or absence of reperfusion. The former (i.e. reperfused MI) allows the investigation of reperfusion injury and new catheter based techniques during percutaneous coronary interventions, while the latter (i.e. nonreperfused MI) serves as a traditional coronary occlusion model, to test the effects of new pharmacological agents and biological therapies, as cell therapy. The reperfused and nonreperfused myocardial infarction has different outcomes, regarding left ventricular function, remodelling, subsequent heart failure, aneurysm formation and mortality. Our aim was to review the literature and report our findings regarding experimental MI models, regarding the differences among species, methods, reproducibility and interpretation.

Restricted access