Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: E. Michéli x
  • All content x
Clear All Modify Search

The soil cover of the world stores more carbon than that present in biomass and in the atmosphere, so the depth and distribution of soil organic matter (SOM) might be important in point of carbon sequestration and climate change mitigation. Texture, among several other factors, plays an important role in the distribution of SOM. Most national and the main international soil classification systems (Soil Taxonomy, World Reference Base for Soil Resources) have a separate unit for high clay content soils on the highest level of classification, as Vertisols. Due to the high swelling clay content, these soils open deep cracks when they are dry. During the process called “pedoturbation”, the high SOM content surface material falls into the cracks, where it accumulates and mixes with subsoil, and enhances the accumulation of SOM in great depth. Although the effect of texture on the stabilization, distribution and properties of SOM have been investigated, only little information is available on SOM distribution in high clay content soils. The objective of the present study was to analyze the vertical distribution of SOM in high clay content soils of Hungary. Our results, based on the investigations of the Hungarian TIM database supported the hypothesis that high clay content soils store significantly more SOM and in greater depth than other soils under similar climatic conditions.

Restricted access
Agrokémia és Talajtan
Authors: Barbara Simon, E. Michéli, G. E. van Scoyoc, and et al.

The Typic Haplustalfs soils (Karád and Oltárc) and the Typic Ustochrepts (Gödöllő) are developed on loess, and on aeolian sand parent material, under forest vegetation, resp. The Dystric Ustochrepts (Velem) soil formed on metamorphic schist parent material and had forest vegetation, while the Typic Medisaprists (Zalavár) soil developed on peat parent material and had marsh vegetation.   Based on this study the spatial variability of surface pH samples indicate that the TIM sampling procedure should be improved. Ten to thirty samples must be collected at each site to be able to monitor changes of 0.2 pH units. If only one sample is taken at each site yearly, spatial difference in pH or other parameters are likely to obscure differences which may be occurring over time.  The colloidal composition (organic matter and clay minerals), influenced by parent material, vegetation, and precipitation, showed a close relationship with the acidity factors, such as pH, HAC 1 and EAC 1 values. The pH values were the lowest in the Velem and Oltárc soils where the annual precipitation was the highest (750-800 mm), and in the Karád soil, where the annual precipitation was 650-700 mm. The Gödöllő soil had the highest pH values, probably due to the lowest amount of rainfall (550-600 mm) and the disturbance. The Zalavár soil had fairly high pH throughout the profile probably due to a fluctuating water table.   The HAC 1 and EAC 1 values were the highest in the Velem soil when compared to the other mineral soils.  The pH values were the lowest at this site. The HAC 1 and EAC 1 values were lower in the other three forest soils, at the Karád, Oltárc, and Gödöllő sites. The Zalavár soil had fairly high HAC 1 values in the H3, H4 and H5 horizons, probably due to the very high OM content, which provided a lot of H + ions that can dissociate from the exchange sites.   The E4/E6 ratios were closely related to the decomposition or humification rate in the upper and the subsurface horizons with accumulation of low molecular weight soluble fraction in the deeper horizon.   The mineralogical analysis showed similar compositions for the soils developed on loess (Karád and Oltárc), or aeolian sand (Gödöllő), where the major minerals were vermiculite, mica, kaolinite, and chlorite. A different mineral composition (mica, vermiculite, clintonite, and kaolinite) was observed for the Velem site, where the parent material was metamorphic schist. The four mineral soils are forest soils, with a predominant downward water movement, thus with fairly intensive leaching process. However, there was a distinct difference among the soils formed on loess (Karád and Oltárc), or aeolian sand (Gödöllő), and the soil (Velem) developed on metamorphic schist parent material.  The soils at the Karád, Oltárc, and the Gödöllő sites were less acidified, with higher pH, and lower HAC 1 , and EAC 1 values as compared to the Velem soil, even if the precipitation was very high. The calcareous loess parent material probably compensated for the higher precipitation and the resulting leaching process at the Karád and the Oltárc sites. The Gödöllő soil received a very low amount of precipitation, which resulted in a low degree of weathering, with higher pH, and lower HAC 1 , and EAC 1 values. However, the metamorphic schist parent material probably contributed to a lower pH and lower buffering of the developing soil.   Based on the chemical and physical analyses, we concluded that among the soil forming factors, precipitation and parent material had the greatest influence on the acidity characteristics of the examined soils. The parent material influenced the mineralogy of the developing soil, which then influenced the pH, HAC 1 , EAC 1 , and CEC values of the soil. In order to substantiate these tendencies more samples from a wider array of geological regions are needed.   

Restricted access

The development of the recent European and global initiatives resulted in an increasing demand for harmonized digital soil information. One of the major limitations of harmonization is the great variation of field and analytical methods and classification systems. Since 1998, the World Reference Base for Soil Resources (WRB) is the global correlation scheme for soil classification and international communication. The one to one correlation of units, however, is difficult, if not impossible. Another problem is that the correct correlation of national units to WRB units might have spatial consequences. If the original map units need to be maintained, it is important to express the extent to which certain national units match with the WRB units. Taxonomic distance measurements were applied successfully to express numerically the correlation between the brown forest soil types (BFS) of the Hungarian Soil Classification System (HSCS) and WRB Reference Soil Groups (RSGs).

Restricted access
Agrokémia és Talajtan
Authors: R. K. Gangwar, M. Makádi, M. Fuchs, Á. Csorba, E. Michéli, I. Demeter, and T. Szegi

Soil samples were collected from salt-affected soils (Solonetz) under different land uses, namely arable (SnA) and pasture (SnP), to investigate the effects of land use on microbiological [basal soil respiration (BSR), microbial biomass carbon (MBC), dehydrogenase activity (DHA) and phosphatase activity] and chemical properties [organic carbon (OC), humic ratio (E4/E6), pH, electrical conductivity (EC), ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), available forms of phosphorus (P2O5), potassium (K2O), calcium (Ca2+), magnesium (Mg2+), sodium (Na+)] and on the moisture content.

The results showed that the two sites, SnA and SnP, were statistically different from each other for all the microbiological and chemical parameters investigated except Na+ and moisture content. Higher values of MBC (575.67 μg g-1), BSR (9.71 μg CO2 g-1 soil h-1), DHA (332.76 μg formazan g-1 day-1) and phosphatase activity (0.161 μmol PNP g-1 hr-1) were observed for the SnP soil. Great heterogeneity was found in SnP in terms of microbiological properties, whereas the SnA plots showed more homogeneous microbiological activity due to ploughing. 75.34% of variance was explained by principal component one (PC1), which significantly separated SnA and SnP, especially on the basis of soil MBC and P2O5. Moreover, it was concluded that the pasture land (SnP) was microbiologically more active than arable land (SnA) among the Hungarian salt-affected soils investigated.

Restricted access