Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: E. Schacht x
  • All content x
Clear All Modify Search

Abstract  

The soft segment crystallinity and morphology of poly(ester-urethanes) (PEUs) based on poly(&-caprolactone) (PCL) as a soft segment and an aliphatic diisocyanate in the hard segment were studied. It was found that the restriction of the crystallization of the PCL soft segment depends on the hard segment concentration, the length of the soft segment, and the total molecular mass of the PEUs. The PEU based on a low molecular mass PCL (M=2000) is an amorphous elastic material during a long time after casting from solution or after melt crystallization. A soft-hard segment endothermal mixing transition (Tmix) of about 70-80C is observed in the DSC curves of this PEU sample.

Restricted access

Abstract  

Microcalorimetric titrations allow to recognize and investigate high-affinity ligand binding to Na,K-ATPase. Titrations with the cardiac glycoside Ouabain, which acts as a specific inhibitor of the enzyme, have provided not only the thermodynamic parameters of high-affinity binding with a stoichiometric coefficient of about 0.6 but also evidence for low-affinity binding to the lipid. The marked enthalpic contribution of -95 kJ mol-1 at 298.2 K is partially compensated by a large negative entropy change, attributed to an increased interaction between water and the protein. The calorimetric ADP and ATP titrations at 298.2 K are indicative of high-affinity nucleotide binding either in 3 mM NaCl, 3 mM MgCl2 or at high ionic strength such as 120 mM choline chloride. However, no binding is detected in the buffer solution alone at low ionic strength. The affinities for ADP and ATP are similar, around 106 M-1 and the stoichiometric coefficients are close to that of Ouabain binding. The exothermic binding of ADP is characterized by a ΔH and ΔS value of -65 kJ mol-1 and -100 J mol-1 K-1, respectively. TheΔH value for ATP binding is larger than for ADP and is compensated by a larger, unfavorable ΔS value. This leads to an enthalpy/entropy compensation, which could express that H-bond formation represents the major type of interaction. As for Ouabain, the negative ΔS values that are also characteristic of nucleotide binding can indicate an increase of solvate interaction with the protein due to a conformational transition occurring subsequent to the binding process. The resulting binding constants are discussed with regard to the results of other studies employing different techniques. A molecular interaction model for nucleotide binding is suggested.

Restricted access

Abstract  

Hydrogels prepared by crosslinkage of gelatin with dextran dialdehyde have been characterized by dynamic shear oscillation measurements at small strain. Isothermal as well as temperature scan measurements were performed. The results obtained demonstrated that the final polymer network is a result of a chemical gelatin-dextran dialdehyde interaction as well as a gelatin-gelatin (physical association) and a polymer-solvent interaction. This balance is strongly dependent on the composition of the system, the polymer concentration, the storage temperature and the storage time. We found that a short cryogenic treatment at −20°C of physically structured gels, significantly increases the chemical crosslinkage. DSC measurements at low cooling rate confirm these results and demonstrate a chemical reaction enthalpy contribution.

Restricted access