Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Egbert Tannich x
  • All content x
Clear All Modify Search

We compared the performance of an in-house and a commercial malaria polymerase chain reaction (PCR) assay using freeze–thawed hemolytic blood samples.

A total of 116 freeze–thawed ethylenediamine tetraacetic acid (EDTA) blood samples of patients with suspicion of malaria were analyzed by an in-house as well as by a commercially available real-time PCR.

Concordant malaria negative PCR results were reported for 39 samples and malaria-positive PCR results for 67 samples. The inhouse assay further detected one case of Plasmodium falciparum infection, which was negative in the commercial assay as well as five cases of P. falciparum malaria and three cases of Plasmodium vivax malaria, which showed sample inhibition in the commercial assay. The commercial malaria assay was positive in spite of a negative in-house PCR result in one case. In all concordant results, cycle threshold values of P. falciparum-positive samples were lower in the commercial PCR than in the in-house assay.

Although Ct values of the commercial PCR kit suggest higher sensitivity in case of concordant results, it is prone to inhibition if it is applied to hemolytic freeze–thawed blood samples. The number of misidentifications was, however, identical for both real-time PCR assays.

Open access
European Journal of Microbiology and Immunology
Authors: Hans Kollenda, Ralf Matthias Hagen, Miriam Hanke, Sandra Rojak, Rebecca Hinz, Lars Wassill, Sven Poppert, Egbert Tannich, and Hagen Frickmann

Background: The objective of this study was to assess an in-house loop-mediated isothermal amplification (LAMP) platform for malaria parasite detection and identification on species level.

Methods: LAMP primers specific for the human Plasmodium spp., namely, P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, as well as genus-specific primers, were tested against a composite gold standard comprising microscopy from thick and thin blood films, commercial genus-specific Meridian illumigene Malaria LAMP, in-house real-time polymerase chain reaction (PCR), and commercial fast-track diagnostics (FTD) Malaria differentiation PCR.

Results: Of the 523 blood samples analyzed, the composite gold standard indicated 243 Plasmodium-species-DNA-containing samples (46.5%). Sensitivity and specificity of the analyzed genus- and species-specific LAMP primers were 71.0%–100.0% and 90.8%–100.0%, respectively. The influence of parasitemia was best documented for P. falciparum-specific LAMP with sensitivity values of 35.5% (22/62) for microscopically negative samples containing P. falciparum DNA, 50% (19/38) for parasitemia ≤50/μL, 84% (21/25) for parasitemia ≤500/μL, and 100% (92/92) for parasitemia >500/μL.

Conclusions: In our hands, performance characteristics of species-specific in-house LAMP for malaria lack reliability required for diagnostic laboratories. The use of the easy-to-apply technique for surveillance purposes may be considered.

Open access
European Journal of Microbiology and Immunology
Authors: Hagen Frickmann, Norbert G. Schwarz, Dorothea F. Wiemer, Marcellus Fischer, Egbert Tannich, Patrick L. Scheid, Martin Müller, Ulrich Schotte, Wolfgang Bock, and Ralf M. Hagen

Abstract

This report analyzes the occurrence of Cryptosporidium spp., E. histolytica, and G. intestinalis in stool of returnees from military deployments and the impact of hygiene precautions. Between 2007 and 2010, stool samples of 830 returnees that were obtained 8–12 weeks after military deployments in Afghanistan, Uzbekistan, the Balkans, Democratic Republic of the Congo/Gabonese Republic, and Sudan and 292 control samples from non-deployed soldiers were analyzed by PCR for Cryptosporidium spp., E. histolytica, G. intestinalis, and the commensal indicator of fecal contamination E. dispar. Data on hygiene precautions were available. The soldiers were questioned regarding gastrointestinal and general symptoms. Among 1122 stool samples, 18 were positive for G. intestinalis, 10 for E. dispar, and no-one for Cryptosporidium spp. and E. histolytica. An increased risk of acquiring chronic parasitic infections in comparison with non-deployed controls was demonstrated only for G. intestinalis in Sudan, where standardized food and drinking water hygiene precautions could not be implemented. Standard food and drinking water hygiene precautions in the context of screened military field camps proved to be highly reliable in preventing food-borne and water-borne chronic infections and colonization by intestinal protozoa, leading to detection proportions similar to those in non-deployed controls.

Restricted access