Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Elen Gócza x
Clear All Modify Search
Authors: B. Baranyai, Sz. Bodó, A. Dinnyés and Elen Gócza

Solid surface vitrification (SSV) was compared with in-straw vitrification for cryopreservation of biopsied mouse embryos. Eight-cell stage embryos were zona drilled and one blastomere was removed. Developed morulae or blastocysts were vitrified in microdrop (35% EG + 5% PVP + 0.4 M trehalose) or in straw (7.0 M EG + 0.5 M sucrose). Following recovery, embryos were cultivated in vi tro or transferred into recipients. Cryopreservation had an effect not only on the survival of biopsied embryos but also on their subsequent development in vitro. Cryosurvival of biopsied morulae vitrified in straw was significantly inferior to SSV. The post-warm development of biopsied and non-biopsied morulae was delayed on Day 3.5 and 4.5 in both vitrification groups. A delay in development was observed on Day 5.5 among vitrified non-biopsied blastocysts. The percentage of pups born from biopsied morulae or blastocysts following cryopreservation did not differ from that of the control. No significant differences could be detected between methods within and between embryonic stages in terms of birth rate. The birth rate of biopsied embryos vitrified in straw was significantly lower compared to the non-biopsied embryos. The novel cryopreservation protocol of SSV proved to be effective for cryopreservation of morula- and blastocyst-stage biopsied embryos.

Restricted access
Authors: Nándor Lipták, Orsolya Ivett Hoffmann, Gabriella Skoda, Elen Gócza, Andrea Kerekes, Zsuzsanna Bősze and László Hiripi

Focal segmental glomerulosclerosis (FSGS) is a potential cause of nephrotic syndrome both in humans and pet mammals. Glomerulopathy was reported earlier in green fluorescent protein (GFP) transgenic (TG) mice, but glomerulosclerosis has not been examined in GFP TG rabbits so far. In the present study, the potential manifestation of FSGS was investigated in both Venus TG rabbits generated by Sleeping Beauty (SB) transposition and age-matched control New Zealand White (NZW) rabbits. Venus protein fluorescence was detected by confocal microscopy and quantified by microplate reader. Urinalysis, haematology, serum biochemistry and renal histology were performed to assess the signs of FSGS. Higher levels of Venus fluorescence were determined in renal cortex samples than in the myocardium by both methods. Urinalysis revealed proteinuria in Venus heterozygote TG bucks, while Venus homozygote TG bucks developed microscopic haematuria. Supporting the urinalysis data, the histological findings of FSGS (glomerulomegaly and sclerotic glomeruli) were observed in renal cortex sections of Venus TG rabbits. Taken together, Venus TG bucks were diagnosed with FSGS; thus, this type of glomerulopathy could be a common disease in TG animals overexpressing GFP.

Restricted access
Authors: S. Bodó, B. Baranyai, Elen Gócza, J. Dohy and Merja Markkula

Preimplantation Genetic Diagnosis (PGD) is reviewed and novel fields where it may be applied are investigated. Technical advances of PGD in cattle embryos have already enabled its integration as a part of the MOET (Multiple Ovulation Embryo Transfer) breeding system. PGD for well-defined selection targets can enhance cattle breeding and embryo trade. It allows embryo selection according to their sex, and it may be used to breed special cow lines, or top bulls, by selecting embryos for valuable production traits using Marker Assisted Selection (MAS). A good allelic profile and/or the insertion of a transgene can be detected by PGD. This review article presents the technical requirements for PGD, and shows that this biotechnological method has great economic potential.

Restricted access
Authors: Mahek Anand, Bence Lázár, Roland Tóth, Emőke Páll, Eszter Patakiné Várkonyi, Krisztina Liptói, László Homolya, Zoltán Hegyi, András Hidas and Elen Gócza

Primordial germ cells (PGCs) were isolated from blood samples of chicken embryos. We established four PGC lines: two males (FS-ZZ-101, GFP-ZZ-4ZP) and two females (FS-ZW-111, GFP-ZW-5ZP). We could not detect a significant difference in the marker expression profile, but there was a remarkable difference between the proliferation rates of these PGC lines. We monitored the number of PGCs throughout a three-day period using a high-content screening cell imaging and analysing system (HCS). We compared three different initial cell concentrations in the wells: ~1000 cells (1×, ~4000 (4× and ~8000 (8×. For the GFPZW- 5ZP, FS-ZZ-101 and FS-ZW-111 PGC lines the lowest doubling time was observed at 4× concentration, while for GFP-ZZ-4ZP we found the lowest doubling time at 1× concentration. At 8× initial concentration, the growth rate was high during the first two days for all cell lines, but this was followed by the appearance of cell aggregates decreasing the cell growth rate. We could conclude that the difference in proliferation rate could mainly be attributed to genotypic variation in the established PGC lines, but external factors such as cell concentration and quality of the culture medium also affect the growth rate of PGCs.

Open access