Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Elie Aïdékon x
  • Refine by Access: All Content x
Clear All Modify Search

Summary  

Consider the boundary case in a one-dimensional super-critical branching random walk. It is known that upon the survival of the system, the minimal position after n steps behaves in probability like
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{3} {2}$$ \end{document}
log n when n → ∞. We give a simple and self-contained proof of this result, based exclusively on elementary properties of sums of i.i.d. real-valued random variables.
Restricted access