Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Emese Zsarnoczay x
- Refine by Access: All Content x
Abstract
Purpose
To compare intra-individual percentage diameter stenosis (PDS) measurements of coronary artery stenoses between energy-integrating detector computed tomography (EID-CT) and a clinical photon-counting detector computed tomography (PCD-CT) systems using similar acquisition and reconstruction settings.
Methods
Patients (n = 23, mean age of 65 ± 12.1 years, out of these 16 (69.6%) male) were imaged on a conventional EID- and a clinical PCD-CT system with a median of 5.5 (3.0–12.5) days apart. Sequential CCTA scans were acquired and reconstructed using similar settings, including a vascular Bv36 kernel, a tube voltage of 110 kVp for EID-CT vs 120 kVp for PCD-CT, a slice thickness of 0.5 for EID-CT vs 0.6 for PCD-CT, and an iterative reconstruction strength of 3 on EID-CT vs a virtual monoenergetic reconstruction at 55 keV and quantum iterative reconstruction level of 3 on PCD-CT. Radiation dose, contrast volume, and injection parameters were matched as similarly as possible between the systems. PDS measurements were performed according to the coronary artery disease reporting and data system (CAD-RADS) by two trained readers and compared between the different modalities using the Wilcoxon rank sum test, Spearman correlation, and Bland-Altman analysis.
Results
PCD-CT measured significantly lower PDS values than EID-CT [PDSEID-CT: 45.1% (35.1%–64.0%) vs. PDSPCD-CT 44.2% (32.4%–61.0%), P < 0.0001]. This difference led to a mean bias of 1.8 (LoA −3.0/6.5) with an excellent ICC (0.99) value among EID- and PCD-CT. The mean intra-individual deviation between the examinations was 1.8% between the scanners. This led to CAD-RADS re-classification in 3/23 cases (13.0%, new-lower class) for the first reader, and in 4/23 cases (13.0%, new-lower and 4.4%, new-higher class) for the second reader. Inter-reader agreement between the two readers for each stenosis was very strong (ICC = 0.98).
Conclusions
Coronary artery stenosis measurements from PCD-CT correlate strongly to EID-CT-based measurements, despite the tendency of the measurement from PCD-CT being lower. This difference led to a change in CAD-RADS classification in 17.4% of patients. The effects on clinical decision-making, downstream testing, and prognosis have to be evaluated in future studies.
Abstract
Background and aim
To assess the prevalence of incidental extracardiac findings in patients who underwent cardiac CT for the evaluation of left atrial (LA) anatomy before atrial fibrillation (AF) catheter ablation. We also aimed to determine the independent predictors of relevant extracardiac alterations.
Patients and methods
We studied consecutive patients who underwent cardiac CT with a 256-slice scanner for the visualization of LA anatomy before AF ablation. Prevalence of clinically significant and not significant extracardiac findings were recorded. Moreover, we determined the variables associated with relevant extracardiac alterations with uni- and multivariate logistic regression analyses.
Results
In total, 1,952 consecutive patients who underwent cardiac CT examination between 2010 and 2020 were included in our study (mean age 61.2 ± 10.6 years; 66.2% male). Incidental extracardiac findings were detected in 820 (42.0%; 95%CI = 0.40–0.44%) patients, while clinically significant alterations were reported in 416 (21.3%; 95%CI = 20.0–23.2%) patients. When analyzing the predictors of clinically relevant alterations, age (OR = 1.04; 95%CI = 1.03–1.05), male sex (OR = 1.39; 95%CI = 1.12–1.73), chest pain (OR = 1.46; 95%CI = 1.09–1.93), hypertension (OR = 1.42; 95%CI = 1.12–1.81), heart failure (OR = 1.68; 95%CI = 1.09–2.53), obstructive CAD (OR = 1.56; 95%CI = 1.16–2.09) and prior stroke/TIA (OR = 1.56; 95%CI = 1.04–2.30) showed association with clinically significant incidental findings in the univariate analysis (all P < 0.05). In the multivariate analysis, age (OR = 1.04; 95%CI = 1.02–1.06; P < 0.001) proved to be the only significant predictor of clinically relevant extracardiac finding.
Conclusion
Cardiac CT performed before AF ablation is not only helpful in understanding LA anatomy, but might also identify clinically significant pathologies. These incidental findings might have further diagnostic or therapeutic consequences.