Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Everett E. Carpenter x
Clear All Modify Search

Abstract

Cobalt nanoparticles were synthesized using continuous-flow (CF) chemistry in a stainless steel microreactor for the first time at high output based on the ethanol hydrazine alkaline system (EHAS) producing a yield as high as 1 g per hour [1, 2]. Continuous-flow (CF) synthetic chemistry provides uninterrupted product formation allowing for advantages including decreased preparation time, improved product quality, and greater efficiency. This successful synthetic framework in continuous-flow of magnetic Co nanoparticles indicates feasibility for scaled-up production. The average particle size by transmission electron microscopy (TEM) of the as-synthesized cobalt was 30±10 nm, average crystallite size by Scherrer analysis (fcc phase) was 15±2 nm, and the estimated magnetic core size was 6±1 nm. Elemental surface analysis (X-ray photoelectron spectroscopy [XPS]) indicates a thin CoO surface layer. As-synthesized cobalt nanoparticles possessed a saturation magnetization (M s) of 125±1 emu/g and coercivity (H c) of 120±5 Oe. The actual M s is expected to be greater since the as-synthesized cobalt mass was not weight-corrected (nonmagnetic mass: reaction by-products, solvent, etc.). Our novel high-output, continuous-flow production (>1 g/hr) of highly magnetic cobalt nanoparticles opens an avenue toward industrial-scale production of several other single element magnetic nanomaterials.

Restricted access
Journal of Flow Chemistry
Authors: Sarah E. Smith, Zachary J. Huba, Fahad Almalki, J. R. Regalbuto, John Monnier and Everett E. Carpenter

Magnetic nanomaterials have many applications in the fields of catalysis, medicine, and environmental studies. An emerging synthetic method capable of large-scale production of nanomaterials is a continuous-flow microreactor. However, translating known conventional benchtop reactions to a continuous-flow system can be difficult; reaction parameters such as reaction time and viscosity of the solution are significant limitations in flow-based systems. In this study, nanocrystalline Cu—Ni and Cu—Co core—shell materials were successfully synthesized using a capillary microreactor in a one-step process. Ethanol was used as solvent, allowing for faster reaction times and reduced reaction solution viscosity, compared to similar bench top synthetic protocols. Both nanocomposites were tested for activity in Fischer—Tropsch and showed activity above 220 °C. This study shows that a continuous-flow capillary microreactor has the capabilities to make complex metallic nanomaterials at short reaction times with proper selection of reaction solvent systems.

Restricted access