Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: F. J. Burguillo x
  • All content x
Clear All Modify Search

Population dynamics models suggest that the over-all level of resource productivity plays an important role in community dynamics. One such factor of resource productivity is the quality of the host plant, which can determine the effectiveness of entomophagous (predatory and parasitoid) species by altering the growth rate of the phytophagous population via effects on fecundity, survival, and rate of development. These effects have been studied in relation to the distribution of host plants and their physiological state. However, few studies have considered the differences among plant cultivars. The objective of this study was to identify a continuous-time dynamic model, to describe the effects of different tomato cultivars on a one predatortwo prey model. The experiment was carried out under greenhouse conditions using ten tomato cultivars, with the predatory species Nesidiocoris tenuis (Reuter) (Insecta, Hemiptera, Miridae) and two prey species: the phytophagous species Bemisia tabaci (Gennadius) (Insecta, Hemiptera, Aleyrodidae) and the parasitoid species Trichogramma achaeae (Nagaraja & Nagarkatti) (Insecta, Hymenoptera, Trichogrammatidae); the latter was used as the intraguild-prey. Using the software SIMFIT, we found that a three-dimensional Lotka-Volterra type system could be well fitted to the data, estimating the phytophagous species´ growth rate, the parasitoid and predator mortality rates, the predation and parasitism rates, and the parasitoid emergence rate according to the cultivar type. The results showed an important effect of the host plant quality, by cultivar, on intraguild predation, resulting in important changes in the dynamics of phytophagous populations. These results are also discussed in relation to their importance in the biological control of pest species in greenhouse crops.

Restricted access