Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: F. Mizukami x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Spinel iron oxide (Fe3O4-γ-Fe2O3) particles were supported on microbeads of silica gel by the calcination of the silica gel base adsorbing citric acid and Fe3+ ions. The X-ray diffraction patterns and the57Fe Mössbauer spectra measured for the spinel iron oxide indicated that the particle size of the oxide was regulated by the mean pore diameter (4–82 nm) of the silica gel support employed. In the case of α-Fe2O3 particles prepared by using the same silica gel beads, it was revealed by the Mössbauer spectra and the electron micrographs that there were relatively large particles of the oxide on the surface of the beads, in addition to the particles in the silica gel micropores.

Restricted access

Thermal and dielectric studies of 2,2’-dihydroxybenzophenone

Progress of crystal nucleation and growth below the glass transition temperature

Journal of Thermal Analysis and Calorimetry
Authors: S. Tomitaka, M. Mizukami, F. Paladi, and M. Oguni

Summary Thermal and dielectric properties of 2,2’-dihydroxybenzophenone were studied in relation with the potential progress of crystal nucleation and growth below the ordinary glass transition temperature, T . Differential scanning calorimetry was carried out in a range 100-350 K. The α glass transition was found to occur at T =239 K. Crystallization and fusion were observed to take place when the sample was cooled down to 103 K, but not observed when cooled to 203 K. Crystal nucleation was interpreted as having happened during annealing for a short time at 103 K which is much below the T . Heat capacities were measured in a range 7-350 K by an intermittent heating method with an adiabatic calorimeter. The temperature, enthalpy and entropy of fusion were determined to be 334.46 K, 20.07 kJ mol-1 and 60.01 J K-1mol-1, respectively. Crystal growth was found to proceed even at 220 K below the T , but no glass transition was detected below 220 K. Dielectric losses were measured in a temperature range of 100-250 K and a frequency range of 30Hz-10 kHz. β-Relaxation process was found dielectrically with the activation energy of 22.6 kJ mol-1, and the corresponding glass transition was expected to occur at 76.9 K. It is discussed, based on the “structurally ordered clusters aggregation” model for supercooled liquids and glasses, that the β process is potentially attributed to the crystal nucleation progressing at 103 K.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Á. Fudala, I. Kiricsi, S.-I. Niwa, M. Toba, Y. Kiyozumi, and F. Mizukami
Restricted access

Abstract  

Mg-Al L(ayered) D(ouble) H(ydroxide) was prepared and its thermal behaviour was characterized by thermoanalytical methods (TG, DTG, DTA), 27Al M(agic) A(ngle) S(pinning) NMR spectroscopy, X-ray diffractometry (XRD) and S(canning) E(lectron) M(icroscopy). Heat treatment destroyed the layered structure, which could only be partially reconstituted by rehydration. On calcination mixed oxide with the predominance of basic sites were formed. Pillaring the LDH with Fe(CN)6 4- anions was also performed. The material was characterized by XRD and BET measurements. Heat stability of the pillared substance was investigated, too. Pillaring proved to be successful, however, decreased heat resistance was found in the intercalated material relative to the guest LDH.

Restricted access