Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: F. Xiong x
  • All content x
Clear All Modify Search

Thermodynamic investigation of room temperature ionic liquid

The heat capacity and thermodynamic functions of BMIPF6

Journal of Thermal Analysis and Calorimetry
Authors: Z. Zhang, T. Cui, J. Zhang, H. Xiong, G. Li, L. Sun, F. Xu, Z. Cao, F. Li, and J. Zhao

Abstract  

The molar heat capacities of the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluoroborate (BMIPF6) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature (X) by polynomial equations, C P,m (J K−1 mol−1) = 204.75 + 81.421X − 23.828 X 2 + 12.044X 3 + 2.5442X 4 [X = (T − 132.5)/52.5] for the solid phase (80–185 K), C P,m (J K−1 mol−1) = 368.99 + 2.4199X + 1.0027X 2 + 0.43395X 3 [X = (T − 230)/35] for the glass state (195 − 265 K), and C P,m (J K−1 mol−1) = 415.01 + 21.992X − 0.24656X 2 + 0.57770X 3 [X = (T − 337.5)/52.5] for the liquid phase (285–390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BMIPF6 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass transition of BMIPF6 was measured to be 190.41 K, the enthalpy and entropy of the glass transition were determined to be ΔH g = 2.853 kJ mol−1 and ΔS g = 14.98 J K−1 mol−1, respectively. The results showed that the milting point of the BMIPF6 is 281.83 K, the enthalpy and entropy of phase transition were calculated to be ΔH m = 20.67 kJ mol−1 and ΔS m = 73.34 J K−1 mol−1.

Restricted access
Cereal Research Communications
Authors: Y.P. Jing, D.T. Liu, X.R. Yu, F. Xiong, D.L. Li, Y.K. Zheng, Y.F. Hao, Y.J. Gu, and Z. Wang

The objective of the present study was to understand the developmental regularity of wheat endosperm cells at different Days After Pollination (DAP) using microscopic and histochemical methods. Resin semi-thin sections of the endosperm and the enzymatically dissociated Starchy Endosperm Cells (SECs) were observed under a light microscope. The results showed that: (1) SECs were irregular-shaped and had two types of starch granules: large oval-shaped A-type starch granules and small spherical B-type starch granules. (2) The growth shape of SECs was referred to as S-curve and the fastest cell growth period was at 16–24 DAP. (3) The largest increase and growth of A-type starch granules were mainly at 4–16 DAP. B-type starch granules increased rapidly after 16 DAP and made up over 90% of the total starch granules in SEC during the late stage of endosperm development. (4) The nuclei of SEC deformed and degenerated during the middle and late stages of endosperm development and eventually disappeared. However, starch granules still increased and grew after the cell nuclei had degenerated. The investigations showed the development regularity of starch endosperm cells and starch granules, thereby improving the understanding of wheat endosperm development.

Restricted access

Compound danshen preparations (CDPs) are used clinically for the treatment of cardiovascular and cerebrovascular diseases. By using the quantitative analysis of multi-components by single-marker (QAMS) method, sixteen compounds (danshensu, protocatechuic acid, protocatechuicaldehyde, caffeic acid, rosmarinic acid, lithospermic acid, notoginsenoside R1, salvianolic acid B, ginsenoside Rg1, ginsenoside Re, salvianolic acid A, salvianolic acid C, ginsenoside Rb1, ginsenoside Rd, cryptotanshinone, and tanshinone IIA were quantified on an ACQUITY ultraperformance liquid chromatography (UPLC) HSS T3 column (2.1 × 100 mm, 1.8 μm) with the mobile phase consisting of 0.1% formic acid aqueous solution (A) and acetonitrile (B) using a gradient elution at the flow rate of 0.30 mL/min in 30 min at 30°C, which was also validated by UPLC-diode array detection (DAD) and UPLC-electrospray ionization multistage/mass spectrometry (ESI-MS/MS) for assuring the feasibility and accuracy. Tested by robustness experiment under slightly changeable conditions, the stability of relative correction factor (RCF) proved to be stable, with RSDs below 5.69%, except for notoginsenoside R1 with relative standard deviation (RSD) 7.83%. This reliable and convenient QAMS method resolved the problem of standard substance insufficiency and improved the quality assessment of preparations consisting of complex compounds with different chemical structures, such as CDPs.

Restricted access

This study was conducted to compare structural development and biochemical accumulation of waxy and non-waxy wheat (NW) caryopses. The caryopses’ microstructure of the waxy wheat (WW) and NW cultivars at different developmental stages were observed under light, fluorescence, and scanning electron microscope. The results were as follows: Compared with NW,WWhad a shorter maturation duration, which was reflected in several following characteristics. Programmed cell death of the pericarp began earlier, and the chlorophyll-containing layer in the pericarp was smaller. Vacuoles in chalazal cells accumulated more tannins at different developmental stages. Starch granules and protein bodies in the endosperm showed a higher accumulation level in developing caryopses, and aleurone cells were larger in size with larger numbers of aleurone grains. An analysis of the element content indicated that the mineral elements Mg, P, K, and Ca exhibited a higher content, while the heavy elements Cr, Cd, and Pb exhibited a lower content in the aleurone layer.

Restricted access
Cereal Research Communications
Authors: H. Yu, Y. Yang, X.Y. Chen, G.X. Lin, J.Y. Sheng, J.Y. Nie, Q.J. Wang, E.J. Zhang, X.R. Yu, Z. Wang, and F. Xiong

The waxy wheat shows special starch quality due to high amylopectin content. However, little information is available concerning the development and degradation of amyloplast from waxy wheat endosperm. To address this problem, waxy wheat variety, Yangnuo 1, and a non-waxy wheat variety, Yangmai 13, were chosen to investigate the development and degradation of endosperm amyloplast during wheat caryopsis development and germination stage respectively using histochemical staining and light microscopy. Changes of morphology, the soluble sugar and total starch content were indistinguishable in the process of caryopsis development of two wheat varieties. The developing endosperm of non-waxy was stained blue-black by I2-KI while the endosperm of waxy wheat was stained reddish-brown, but the pericarp of waxy and non-waxy wheat was stained blue-black. In contrast to nonwaxy wheat, endosperm amyloplast of waxy wheat had better development status and higher proportion of small amyloplast. During seed germination many small dissolution pores appeared on the surface of endosperm amyloplast and the pores became bigger and deeper until amyloplast disintegrated. The rate of degradation of waxy wheat endosperm amyloplast was faster than non-waxy wheat. Our results may also be helpful to the use of waxy starch in food and nonfood industry.

Restricted access