Search Results

You are looking at 1 - 10 of 41 items for

  • Author or Editor: F. Zhao x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

We prove that almost all integers N satisfying some necessary congruence conditions are the sum of j almost equal prime cubes with j = 5; 6; 7; 8, i.e., N = p 1 3 + ... + p j 3 with |p i − (N/j)1/3| ≦
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$N^{1/3 - \delta _j + \varepsilon }$$ \end{document}
(1 ≦ ij), for δ j = 1/45; 1/30; 1/25; 2/45, respectively.
Restricted access

Abstract  

A method for estimating the critical temperatures (T b) of thermal explosion for energetic materials is derived from Semenov’s thermal explosion theory and the non-isothermal kinetic equation dα/dt=A 0 T B f(α)e−E/RT using reasonable hypotheses. The final formula of calculating the value of T b is
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left( {\frac{B} {{T_b }} + \frac{E} {{RT_b^2 }}} \right)$$ \end{document}
(T bT e0=1. The data needed for the method, E and T e0, can be obtained from analyses of the non-isothermal DSC curves. When B=0.5 the critical temperature (T b) of thermal explosion of azido-acetic-acid-2-(2-azido-acetoxy)-ethylester (EGBAA) is determined as 475.65 K.
Restricted access

Abstract  

Microcalorimetry was applied to study the toxic action of two cobalt compounds such as bis(salicylideniminato-3-propyl)methylaminocobalt(II) (denoted as Co(II)) and Co(III) sepulchrate trichloride (denoted as Co(sep)3+) on (E. coli) DH5α. The power-time curves of the E. coli DH5α growth were determined, and the thermokinetics parameters such as the growth rate constant k, the maximum power output P m and the time (t m) corresponding to the P m were obtained. The half-inhibitory concentrations (IC50) of Co(II) and Co(sep)3+ to E. coli DH5α were 15 and 42.1 mg mL−1, respectively. The experimental results revealed that the toxicity of the Co(II) compound was larger than that of Co(sep)3+. On the other hand, the scanning electron microscopy (SEM) demonstrated that the two cobalt compounds had the same toxic mechanism on E. coli DH5α, which was attributed to the damage of cell wall of the bacteria caused by both Co(II) and Co(sep)3+. Furthermore, accumulation of intracellular cobalt of E. coli DH5α, due to the interaction of Co(II) or Co(sep)3+ and E. coli DH5α, has been found by using inductively coupled plasma (ICP) analytical technique.

Restricted access

Abstract  

Microcalorimetry was applied to study the effect of cephalosporins (cefazolin sodium and cefonicid sodium) on the E. coli growth. The microbial activity was recorded as power-time curves through an ampoule method with a TAM Air Isothermal Microcalorimeter at 37°C. The parameters such as the growth rate constant (k), inhibitory ratio (I), the maximum power output (P m) and the time corresponding to the maximum power output (t m) were calculated. The change tendencies of k, with the increasing of concentration (C) of the two cephalosporins, are similar which show that cefazolin sodium and cefonicid sodium have the same inhibitory mechanism. The experimental results reveal that cefonicid sodium has a stronger antibacterial activity towards E. coli than that of cefazolin sodium and this was coincide with the clinical manifestations.

Restricted access

Abstract  

The thermal decomposition characteristics of1,7-diazido-2,4,6-trinitrazaheptane (DATH) and multi-component systems containing DATH were studied by using DSC, TG and DTG techniques. Three –NO2 groups in the DATH molecule break away first from the main chain when DATH is heated up to 200C. Following this process, the azido groups and the residual molecule decompose rapidly to release a great deal of heat within a short time. In the multi-component systems, DATH undergoes a strong interaction with the binder of the double-base propellant and a weak interaction with RDX. The burning rates of the two propellants were determined by using a Crawford bomb. The results showed that the burning rate rises by about 19–66% when 23.5%DATH is substituted for RDX in a minimum smoke propellant. Meanwhile, the N2 level in the combustion gases is enhanced, which is valuable for a reduction of the signal level of the solid propellant.

Restricted access
Cereal Research Communications
Authors:
H.Q. Zhao
,
L. Wang
,
J. Hong
,
X.Y. Zhao
,
X.H. Yu
,
L. Sheng
,
C.Z. Hang
,
Y. Zhao
,
A.A. Lin
,
W.H. Si
, and
F.S. Hong

Salt stress impaired Mn imbalance and resulted in accumulation of ROS, and caused oxidative stress to plants. However, very little is known about the oxidative damage of maize roots caused by exposure to a combination of both salt stress and Mn deprivation. Thus the main aim of this study was to determine the effects of a combination of salt stress and Mn deprivation on antioxidative defense system in maize roots. Maize plants were cultivated in Hoagland’s media. They were subjected to 80 mM NaCl administered in the Mn-present Hoagland’s or Mn-deficient Hoagland’s media for 14 days. The findings indicated that the growth and root activity of maize seedlings cultivated in a combination of both salt stress and Mn deprivation were significantly inhibited; the compatible solute accumulation, malondialdehyde, carbonyl, 8-OHdG, and ROS were higher than those of the individual salt stress or Mn deprivation as expected. Nevertheless, the antioxidative enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase, glutathione-S-transferase and antioxidants such as ascorbic acid, glutathione and thiol were lower than those of the individual salt stress or Mn deprivation. In view of the fact that salt stress impaired Mn nutrition of maize seedlings, the findings suggested that Mn deprivation at the cellular level may be a contributory factor to salt-induced oxidative stress and related oxidative damage of maize roots.

Restricted access

Abstract  

The decomposition reaction kinetics of the double-base (DB) propellant (No. TG0701) composed of the mixed ester of triethyleneglycol dinitrate (TEGDN) and nitroglycerin (NG) and nitrocellulose (NC) with cerium(III) citrate (CIT-Ce) as a combustion catalyst was investigated by high-pressure differential scanning calorimetry (PDSC) under flowing nitrogen gas conditions. The results show that pressure (2 MPa) can decrease the peak temperature and increase the decomposition heat, and also can change the mechanism function of the exothermal decomposition reaction of the DB gun propellant under 0.1 MPa; CIT-Ce can decrease the apparent activation energy of the DB gun propellant by about 35 kJ mol−1 under low pressure, but it can not display the effect under high pressure; CIT-Ce can not change the decomposition reaction mechanism function under a pressure.

Restricted access

Abstract  

A microcalorimetric technique based on the bacterial heat output was applied to evaluate the influence of antibiotics PIP (Piperacillin Sodium) and composite preparation of PIP and SBT (Sulbactam Sodium) on the growth of E. coli DH5α. The power–time curves of the growth metabolism of E. coli DH5α were studied using a TAM Air Isothermal Microcalorimeter at 37C. By analyzing the power–time curves, the parameters such as growth rate constants (k), inhibitory ratio (I), the maximum heat power (P m) and the time of the maximum heat power (t m) were obtained. The results show that different concentrations of antibiotics affect the growth metabolism of E. coli DH5α. The PIP in the concentration range of 0–0.05 g mL–1 has a stimulatory effect on the E. coli DH5α growth, while the PIP of higher concentrations (0.05 –0.25 g mL–1) can inhibit its growth. It seems that the composite preparation composed of PIP and SBT cannot improve the inhibitory effect on E. coli DH5α as compared with the PIP.

Restricted access

Abstract  

The effects of Amoxicillin Sodium and Cefuroxime Sodium on the growth of E. coli DH5α were investigated by microcalorimetry. The metabolic power-time curves of E. coli DH5α growth were determined by using a TAM air isothermal microcalorimeter at 37�C. By evaluation of the obtained parameters, such as growth rate constants (k), inhibitory ratio (I), the maximum heat power (P m) and the time of the maximum heat power (t m), one found that the inhibitory activity of Amoxicillin Sodium vs. E. coli DH5α is enhanced with the increasing of the Amoxicillin Sodium concentration, and the Cefuroxime Sodium has a stimulatory effect on the E. coli DH5α growth when the concentration is about 1 μg mL−1. The IC50 for the Amoxicillin Sodium and the Cefuroxime Sodium are 1.6 and 2.0 μg mL−1, respectively, it implicates that the E. coli DH5α is more sensitive to Amoxicillin Sodium than Cefuroxime Sodium.

Restricted access

Abstract  

To increase the tumor uptake of Val-Gly-Gly (VGG), adenine was introduced into the peptide. N-mercaptoacetyl-VGG-adenine (MAVGG-adenine) and MAVGG were labeled with 99mTc using a solution of SnCl2 and tartaric acid as reducing agent. Biodistribution in mice bearing the S180 tumor was measured and γ imaging was performed. Compared with MAVGG, adenine conjugated MAVGG had higher tumor uptake and tumor to normal tissue ratios, which suggested that the tumor uptake property of a peptide may be improved by introducing a nucleotide base. The high contrasted tumor images of 99mTc-MAVGG-adenine also suggested its potential utility as tumor imaging agent.

Restricted access