Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: F. Zhong x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

An apparatus to study the battery system has been set up. The thermal effects of charge and discharge of Ni-MH batteries have been studied. The calorimetric measurements indicate that the net heat dissipation during charging is larger than that during discharging. It is observed that the ratio of heat dissipation to charging energy varies with charging capacity, and almost 90 percent of charging energy is lost as heat dissipation near the end of the charging process at 97.7 mA. A jump of thermal curve near the end of discharge due to a secondary electrode reaction has been observed.

Restricted access

Abstract  

In this work some calorimetric measurements were also carried out on the electrorefining silver by using different current densities with a Calvet type microcalorimeter at room temperature. The ratio (R) of the measured heat (

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$Q$$ \end{document}
m) to the input electric energy (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$Q$$ \end{document}
in) and the excess heat (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$Q$$ \end{document}
ex), i.e., difference between
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$Q$$ \end{document}
m and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$Q$$ \end{document}
in during the electrorefining process, were discussed in terms of general thermodynamics. It was found that the R and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$Q$$ \end{document}
ex for silver were related with the current density or cell voltage employed in the experiment. The results obtained here also indicate that the heat generation under different conditions, such as different currents or voltages may be caused partially by the irreversibility of the process or by some unknown processes.

Restricted access
Acta Physiologica Hungarica
Authors: K. Kumagai, K. Kurobe, H. Zhong, J. Loenneke, R. Thiebaud, F. Ogita, and Takashi Abe

Previous studies reported that aerobic-type exercise such as walking or cycling with blood flow restriction (BFR) has been shown to elicit increases in leg muscle hypertrophy and strength, as well as improved aerobic capacity. Although previous studies investigated cardiovascular responses during a relatively short duration of exercise (∼5 min), the effects of prolonged leg muscular BFR have remained unknown. The purpose of this study was to examine the cardiovascular effects of longer duration low intensity exercise combined with BFR. Eight men performed 30 min of exercise at 40% of a predetermined maximal oxygen uptake under both BFR and normal flow (CON) conditions. Cardiovascular parameters were measured at rest and every 10 min during exercise. The main findings were that 1) the SV and HR did not change significantly between 10 to 30 min of exercise in BFR and CON conditions, although BFR-induced reduction of SV and increased HR were found at 10 min exercise compared with normal flow, 2) blood pressure was increased at 10 min of exercise in BFR compared to the CON, however the blood pressure decreased gradually with BFR from 10 to 30 min of exercise, and 3) blood lactate and RPE increased gradually during exercise with BFR. In conclusion, our results suggest that the BFR-induced reduction of SV and increased HR within the first 10 min of exercise are representative of changes in these parameters.

Restricted access

Abstract  

The desorption behaviour (desorption temperature and extent of desorption) of HF,HCFC-133a (CF3CH2Cl) and HFC-134a (CF3CH2F) on γ-AlF3 or catalyst supported on γ-AlF3 was studied using an adsorption apparatus and TG, DTA and DSC methods. On the basis of the results a reaction mechanism was proposed for the preparation of HFC-134a. The γ-AlF3 employed for preparing the catalyst was expected to be stable below 550C based on the crystalline phase transition temperature of γ-AlF3.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: L. Ji-zhen, F. Xue-zhong, H. Rong-zu, Z. Xiao-dong, Z. Feng-qi, and G. Hong-Xu

Abstract  

The thermal behavior of copper(II) 4-nitroimidazolate (CuNI) under static and dynamic states are studied by means of high-pressure DSC (PDSC) and TG with the different heating rates and the combination technique of in situ thermolysis cell with rapid-scan Fourier transform infrared spectroscopy (thermolysis/RSFTIR). The results show that the apparent activation energy and pre-exponential factor of the major exothermic decomposition reaction of CuNI obtained by Kissinger’s method are 233.2 kJ mol−1 and 1017.95 s−1, respectively. The critical temperature of the thermal explosion and the adiabatic time-to-explosion of CuNI are 601.97 K and 4.4∼4.6 s, respectively. The decomposition of CuNI begins with the split of the C-NO2 and C-H bonds, and the decomposition process of CuNI under dynamic states occurs less readily than those under static states because the dynamic nitrogen removes the strong oxidative decomposition product (NO2). The above-mentioned information on thermal behavior is quite useful for analyzing and evaluating the stability and thermal charge rule of CuNI.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: F. Xu, L. Sun, P. Chen, Y. Qi, J. Zhang, J. Zhao, Y. Liu, L. Zhang, Zhong Cao, D. Yang, J. Zeng, and Y. Du

Abstract  

The heat capacities of LiNH2 and Li2MgN2H2 were measured by a modulated differential scanning calorimetry (MDSC) over the temperature range from 223 to 473 K for the first time. The value of heat capacity of LiNH2 is bigger than that of Li2MgN2H2 from 223 to 473 K. The thermodynamic parameters such as enthalpy (HH 298.15) and entropy (SS 298.15) versus 298.15 K were calculated based on the above heat capacities. The thermal stabilities of them were investigated by thermogravimetric analysis (TG) at a heating rate of 10 K min−1 with Ar gas flow rate of 30 mL min−1 from room temperature to 1,080 K. TG curves showed that the thermal decomposition of them occurred in two stages. The order of thermal stability of them is: Li2MgN2H2 > LiNH2. The results indicate that addition of Mg increases the thermal stability of Li–N–H system and decrease the value of heat capacities of Li–N–H system.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Li-Fang Song, Cheng-Li Jiao, Chun-Hong Jiang, Jian Zhang, Li-Xian Sun, Fen Xu, Qing-Zhu Jiao, Yong-Heng Xing, F. L. Huang, Yong Du, Zhong Cao, Fen Li, and Jijun Zhao

Abstract

One-three-dimensional metal-organic frameworks Mg1.5(C12H6O4)1.5(C3H7NO)2 (MgNDC) has been synthesized solvothermally and characterized by single crystal XRD, powder XRD, FT-IR spectra. The low-temperature molar heat capacities of MgNDC were measured by temperature modulated differential scanning calorimetry (TMDSC) over the temperature range from 205 to 470 K for the first time. No phase transition or thermal anomaly was observed in the experimental temperature range. The thermodynamic parameters of MgNDC such as entropy and enthalpy relative to reference temperature of 298.15 K were derived based on the above molar heat capacities data. Moreover, the thermal stability and decomposition of MgNDC was further investigated through thermogravimetry (TG)–mass spectrometer (MS). Three stages of mass loss were observed in the TG curve. TG–MS curve indicated that the oxidative degradation products of MgNDC are mainly H2O, CO2, NO, and NO2.

Restricted access