Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Flóra Hajdu x
- Refine by Access: All Content x
The numerical examination of nonlinear oscillators is presented in this paper. First some methods of nonlinear system modeling are described then the numerical creation of phaseplane, bifurcation diagrams and Poincaré sections are expounded in detail. The next part of the paper is the numerical examination of nonlinear oscillators, like the Duffing-Holmes oscillator and a mechatronic semi-active suspension system. The paper concludes with further development tasks.
Abstract:
In this study the detailed One-at-a-Time sensitivity analysis of nonlinear mass spring-damper systems is carried out with numerical simulation. The degree of sensitivity was measured with a sensitivity index and based on its sensitivity Fuzzy-sets were established. The sensitivity of a parameter then can be expressed by the membership to the Fuzzy-sets. In this study the root mean square of acceleration, the maximum amplitude of acceleration and the peak frequency were chosen as output variables to measure sensitivity. With this research it was proven, that the root mean square of acceleration and the peak frequency can be used for sensitivity study of nonlinear vibration systems effectively.
Abstract
The aim of the research was to carry out the One-at-a-Time sensitivity analysis of a tree burning experiment simulation with a novel fuzzy logic-based method. It was observed that the precent of the remaining tree is sensitive to the moisture content, the crown-base diameter and the tree height. The other variables, which are maximum mass loss rate, maximum heat release rate, and maximum temperature at the top of the tree are moderately sensitive or not sensitive to the selected parameters. The presented results can be used in sensitivity studies and wildfire simulations.
Abstract
In Hungary a lot of people live in condominiums or in block of flats where fire often occurs despite of precise design and effective fire protection arrangements. This means a hazard for the people living there, for the building constructions and also for the environment. A deeper knowledge of the burning process and examining the negative effects of fire load on building constructions with scientific methods are actual questions nowadays. In order to get to know the phenomena more accurately, fire spread in a bedroom was modeled and numerical simulation was carried out, which is presented in this paper in detail. These experiences may help increasing the fire safety and preventing fires in apartments. The simulations were carried out considering the characteristics of the Hungarian architecture.
Abstract
In recent years, in order to increase the energy efficiency of older buildings in Hungary, several tenders have supported the modernization of the thermal insulation. Various thermal insulation materials have been installed on walls, on slab and on floor. Unfortunately there are cases where thermal insulation materials are not installed in accordance with the construction permit or the manufacturer’s instructions, which poses a serious danger in case of a fire. During the research the effects of heat on the behavior of Expanded PolyStyrene, a thermal insulation material often used in Hungary is examined. Laboratory tests and computer simulations were carried out, which are presented in detail in this paper. The aim of the research is to contribute to increase the fire safety of buildings.
Abstract
In case of field measurement it is essential to determine the measurement conditions. With accurate parameter identification credible measurement and simulation results can be achieved. In this paper the parameter identification of a CSD-755-10 heavy-duty fire truck suspension for vibration analysis is presented, which is an important base-point for further research.