Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Francisco Marcellán x
Clear All Modify Search

Abstract  

In this contribution we analyze the generating functions for polynomials orthogonal with respect to a symmetric linear functional u, i.e., a linear application in the linear space of polynomials with complex coefficients such that

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$u\left( {x^{2n + 1} } \right) = 0$$ \end{document}
. In some cases we can deduce explicitly the expression for the generating function
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${\mathcal{P}}\left( {x,w} \right) = \sum\limits_{n = 0}^\infty {c_n P_n \left( x \right)w^n ,}$$ \end{document}
where {Pn}n is the sequence of orthogonal polynomials with respect to u.

Restricted access