Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: G. Dörnyei x
  • Refine by Access: All Content x
Clear All Modify Search


By now, there is no doubt that regular physical exercise has an overall beneficial effect on each organ of the body. However, the effects of highly competitive sports (HCS) are more complex, as they exert greater demands on the cardiovascular and metabolic systems, among others. Strength, athletic, and aesthetic sport types each has a different exercise intensity and nutritional loading, as well as a different prevalence of cardiometabolic diseases at a later age. HCS athletes experience hypertension and mental stress during competitions and high nutritional loads between them. The post-career effects of this behaviour on the heart, arteries, cellular metabolism, and risk of obesity, are not well known and are not often the focus of research. In this review, we aimed to summarize the post-career effects of HCS. Based on data in the literature, we propose that athletes involved in highly competitive strength sports progressively develop metabolic syndrome and sustained elevated blood pressure.

Open access



Low-frequency electromagnetic field (EMF) exposure in rat has positive effects on neuronal processes in vitro. Moreover, EMF improves learning-memory and psychomotor activity during advanced ageing, but the underlying molecular mechanisms are not known in the brain. In the present study we aimed to investigate the molecular effects of chronic EMF stimulation in the hippocampus of senescent rats in vivo.


Thirty months old rats were treated for six weeks with different EMF doses of 45, 95, and 1,250 µT. After sacrifice the levels of Brain Derived Neurotrophic Factor (BDNF) and activated ribosomal protein S6 as measures for protein synthesis intensity in the hippocampus were determined by Western blot analysis.


The results showed that chronic EMF exposure dose dependently increased BDNF and the amount of phosphorylated S6 protein at the highest dose. The effects on the two proteins positively correlated at individual level. The results indicate that EMF exposure may enhance neurotrophic processes indicated by increased BDNF expression in the hippocampus of senescent rats. Increased phosphorylated S6 protein suggests coupling to support molecular regulation of protein synthesis.


In a broader perspective, these findings may support EMF as a beneficial alternative form of passive exercise in active, exercise-limited, aged individuals.

Open access