Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: G. Du x
  • All content x
Clear All Modify Search

Abstract  

This paper introduces a new type of extractant, sym-dibenzo-16-crown-5-oxyhydroxamic acid (HL). The extraction of UO 2 2+ , Na+, K+, Sr2+, Ba2+ and Br were studied with HL in chloroform. The results obtained show that UO 2 2+ can be quantitatively extracted at pH above 5, whereas the extractions of K+, Na+, Ba2+ and Br are negligible in the pH range of 2–7. The dependence of the distribution ratio of U(VI) on both the concentration of the HL and pH are linear, and they have the same slope of 2. This suggests that U(VI) appears to form a 12 complex with ligand.Uranium (VI) can be selectively separated and concentrated from interfering elements such Na, K, Sr and Br by solvent extraction with HL under specific conditions. The recovery of uranium is nearly 100% and the radionuclear purity of uranium is greater than 99.99%. Therefore, it has greatly improved the sensitivity and accuracy for the detection of trace uranium from seawater by neutron activation analysis.

Restricted access

Abstract  

The free-radical bulk polymerization of 2,2-dinitro-1-butyl-acrylate (DNBA) in the presence of 2,2′-azobisisobutyronitrile (AIBN) as the initiator was investigated by DSC in the non-isothermal mode. Kissinger and Ozawa methods were applied to determine the activation energy (E a) and the reaction order of free-radical polymerization. The results showed that the temperature of exothermic polymerization peaks increased with increasing the heating rate. The reaction order of non-isothermal polymerization of DNBA in the presence of AIBN is approximately 1. The average activation energy (92.91±1.88 kJ mol −1) obtained was smaller slightly than the value of E a=96.82 kJ mol−1 found with the Barrett method.

Restricted access

Abstract  

2,2-dinitropropyl acrylate (DNPA), 2,2-dinitrobutyl acrylate (DNBA) and 2,2-dinitrobutyl methacrylate (DNBMA) were synthesized and the kinetics of their free-radical polymerization in the presence of 2,2′-azobisisobutyronitrile (AIBN) were investigated by DSC in the non-isothermal mode. The kinetics of the free-radical polymerization as estimated by the Kissinger and Ozawa methods showed that the reaction is disfavoured by increasing steric hindrance around the acrylyl double bond. The rate constants calculated from the activation parameters showed the structural dependency. The polymerization kinetics revealed that the polymerizability of three monomers decreased due to the presence of substituent methyl groups on the acrylyl double bond and 2,2-dinitrobutyl on ester group. Thus, the polymerization tendency increased in the order DNPA>DNBA>DNBMA.

Restricted access

Summary

An efficient ionic liquid-based microwave-assisted (IL-MAE) method has been developed for extraction of dehydrocavidine from Corydalis saxicola Bunting (C. saxicola) for subsequent rapid analysis by high-performance liquid chromatography (HPLC). The yield of dehydrocavidine reached 9.446 mg g−1 within 10 min under the optimum IL-MAE conditions (1.5 mol L−1 [hmim]Br as extraction solvent, liquid-to-solid ratio 20:1 (mL:g), and extraction temperature 70°C). Compared with conventional procedures, the proposed IL-MAE method has many advantages, for example high extraction yield, short extraction time, low solvent consumption, no use of volatile organic solvents, and no further sample clean-up before HPLC analysis. The method was validated for limit of detection (LOD) and quantification (LOQ), linearity, precision, recovery, and reproducibility. The calibration range was 5.0–200 mg L−1 and the correlation coefficient, r, was 0.9996. The LOD and LOQ were 0.035 and 0.12 mg L−1, respectively. The relative standard deviations of intra-day and inter-day assays were below 2.6% and 6.5%, respectively. Recovery was between 93.8% and 109.3% with RSD values below 5.0%. The method can be used for rapid and effective extraction and analysis of active components from medicinal plants.

Restricted access

The chemistry of uranium

Part 30. The effect of the cation on the thermal decomposition of hexanitrato uranate (IV)

Journal of Thermal Analysis and Calorimetry
Authors: J. G. H. du Preez, A. Litthauer, and C. P. J. van Vuuren

The thermal decomposition reactions of various hexanitrato uranium(IV) species, M2U(NO3)6 where M=Cs+, NEt4 +, AsPh4 + and PPh4 + have been studied.

Restricted access

Despite a long history of alpine meadows studies, uncertainty remains about the importance of environmental factors in structuring their assembly. We examined the functional and phylogenetic structure of 170 alpine Tibetan meadow communities in relation to elevation, soil moisture and shade. Functional community structure was estimated with both communityweighted mean (CWM) trait values for specific leaf area (SLA), plant height and seed mass and functional diversity (Rao’s quadratic index) for their traits individually and in combination (multivariate functional diversity). We found that shade induced by woody plants significantly increased the phylogenetic diversity and functional diversity of SLA of co-occurring species, suggesting that woody plants behave as “ecosystem engineers” creating a different environment that allows the existence of shade tolerant species and thereby facilitates the coexistence of plant species with different light resource acquisition strategies. We also found evidence for a clear decrease in phylogenetic diversity, CWM and functional diversity related to plant height in the two extreme, both the dry and wet, soil moisture conditions. This indicates that both drought and excess moisture may act as environmental filters selecting species with close phylogenetic relationships and similar height. Moreover, we detected significant decreases in both CWM and functional diversity for seed mass along elevational gradients, suggesting that low net primary productivity (NPP) limits seed size. Finally, because of different individual trait responses to environmental factors, the multivariate functional diversity did not change across environmental gradients. This lack of multivariate response supports the hypothesis that multiple processes, such as environmental filtering, competition and facilitation, may operate simultaneously and exert opposing effects on community assembly along different niche (e.g., water use, light acquisition) axes, resulting in no overall functional community structure change. This contrast between individual and multivariate trait patterns highlights the importance of examining individual traits linked with different ecological processes to better understand the mechanisms of community assembly.

Restricted access

In this paper, 633 species (involving 10 classes, 48 families, 205 genera) collected from the alpine meadow on the eastern Qinghai-Tibet plateau were studied. We tested potential factors affecting variation in mean germination time (MGT), i.e., plant traits (adult longevity, dispersal mode and seed size) or phylogeny, to evaluate if these factors were independent or they had interaction. Nested ANOVA showed that taxonomic membership accounted for the majority of MGT variation (70%), and in the generalized linear model, family membership could explain independently the largest proportion of MGT variation (29%). The strong taxonomic effect suggests that MGT variation within taxonomic membership is constrained. The other plant traits could also explain MGT variation independently (1% by adult longevity and dispersal mode, respectively, and 2% by seed size). Thus, the phylogeny was an important constraint to maintain the stability of species, and we could simplify the question if we regarded the phylogeny as an individual factor, but we could not negate the adaptive significance of the relationship between other plant traits and seed MGT. In addition, a large percentage of the variance remained unexplained by our model, thus important selective factors or parameters may have been left out of this analysis. We suggest that other possible correlates may exist between seed germination time and additional ecological factors (for example, altitude, habitat and post-dispersal predation) or phylogenetic related morphological and physiological seed attributes (e.g., endosperm mass) that were not evaluated in this study.

Restricted access

Chinese endemic wheat landraces possess unique morphological features and desirable traits, useful for wheat breeding. It is important to clarify the relationship among these landraces. In this study, 21 accessions of the four Chinese endemic wheat landrace species were investigated using single-copy genes encoding plastid Acetyl-CoA carboxylase (Acc-1) and 3-phosphoglycerate kinase (Pgk-1) in order to estimate their phylogenetic relationship. Phylogenetic trees were constructed using maximum parsimony (MP), maximum likelihood (ML) and Bayesian, and TCS network and gene flow values. The A and B genome sequences from the Pgk-1 loci indicated that three accessions of Triticum petropavlovskyi were clustered into the same subclade, and the T. aestivum ssp. tibetanum and the Sichuan white wheat accessions were grouped into a separate subclade. Based on the Acc-1 gene, T. aestivum ssp. tibetanum and T. aestivum ssp. yunnanense were grouped into one subclade in the A genome; the B genome from T. petropavlovskyi and T. aestivum ssp. tibetanum, and the Sichuan white wheat complex and T. aestivum ssp. tibetanum were grouped in the same clades. The D genome of T. aestivum ssp. yunnanense clustered with T. petropavlovskyi. Our findings suggested that (1) T. petropavlovskyi is distantly related to the Sichuan white wheat complex; (2) T. petropavlovskyi, T. aestivum ssp. tibetanum and T. aestivum ssp. yunnanense are closely related; (3) T. aestivum ssp. tibetanum is closely related to T. aestivum ssp. yunnanense and the Sichuan white wheat complex; and (4) T. aestivum ssp. tibetanum may be an ancestor of Chinese endemic wheat landraces.

Restricted access

Bee pollen is a health food with a wide range of nutritional and therapeutic properties. However, the bioactive compounds of bee pollen have not been extensively revealed due to low efficacy in separation. High-speed counter-current chromatography (HSCCC) and solvent extraction were applied to separate tyrosinase inhibitors from camellia pollen in this study. The camellia pollen extracts prepared with petroleum ether, ethyl acetate, and n-BuOH have tyrosinase inhibitory activity. Acidic hydrolysis could promote the tyrosinase inhibitory activity of crude sample. Three fractions with tyrosinase inhibitory activity were separated from the hydrolysate by a one-step HSCCC procedure. Among the fractions, two chemicals were sufficiently purified and identified to be levulinic acid (LA) and 5-hydroxymethylfurfural (5-HMF). The recovery was 0.80 g kg−1 pollen for LA and 1.75 g kg−1 pollen for 5-HMF; and their purity was all over 98%. The study demonstrates that HSCCC method is powerful for preparative separation of tyrosinase inhibitors from camellia pollen.

Open access

Rht18, derived from Triticum durum (tetraploid) wheat, is classified as a gibberellic acid (GA)-responsive dwarfing gene. Prior to this study, the responses of Rht18 to exogenous GA on agronomic traits in hexaploid wheat were still unknown. The response of Rht18 to exogenous GA3 on coleoptile length, plant height, yield components and other agronomic traits were investigated using F4:5 and F5:6 hexaploid dwarf lines with Rht18 derived from two crosses between the tetraploid donor Icaro and tall Chinese winter wheat cultivars, Xifeng 20 and Jinmai 47. Applications of exogenous GA3 significantly increased coleoptile length in both lines and their tall parents. Plant height was significantly increased by 21.3 and 10.7% in the GA3-treated dwarf lines of Xifeng 20 and Jinmai 47, respectively. Compared to the untreated dwarf lines, the partitioning of dry matter to ears at anthesis was significantly decreased while the partitioning of dry matter to stems was significantly increased in the GA3-treated dwarf lines. There were no obvious changes in plant height and dry matter partitioning in the GA3-treated tall parents. Exogenous GA3 significantly decreased grain number spike–1 while it increased 1000-kernel weight in both the dwarf lines and tall parents. Thus, applications of exogenous GA3 restored plant height and other agronomic traits of Rht18 dwarf lines to the levels of the tall parents. This study indicated that Rht18 dwarf mutants are GA-deficient lines with impaired GA biosynthesis.

Restricted access