Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: G. Hendry x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

A pathP in a graphG is said to beextendable if there exists a pathP’ inG with the same endvertices asP such thatV(P)⊆V (P’) and |V(P’)|=|V(P)|+1. A graphG ispath extendable if every nonhamiltonian path inG is extendable. We investigate the extent to which known sufficient conditions for a graph to be hamiltonian-connected imply the extendability of paths in the graph. Several theorems are proved: for example, it is shown that ifG is a graph of orderp in which the degree sum of each pair of non-adjacent vertices is at leastp+1 andP is a nonextendable path of orderk inG thenk≤(p+1)/2 and 〈V (P)〉≅Kk orKke. As corollaries of this we deduce that if δ(G)≥(p+2)/2 or if the degree sum of each pair of nonadjacent vertices inG is at least (3p−3)/2 thenG is path extendable, which strengthen results of Williamson [13].

Restricted access